961 resultados para Cooling rate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O principal objetivo desse trabalho é investigar a influência dos parâmetros térmicos velocidade de solidificação (VL) e taxa de resfriamento (TR), nos espaçamentos dendríticos primários (λ1) da liga hipoeutética Al-7%Si, durante a solidificação direcional horizontal, em regime transiente. Os valores de λ1 foram medidos ao longo do comprimento do lingote e correlacionados com esses parâmetros. A variação dos espaçamentos dendríticos estudados é expressa por meio de funções na forma de potência de VLe TRdadas, respectivamente, por λ1= 55(VL)-1.1e λ1= 212 (TR)-0.55. Um estudo comparativo é realizado entre os resultados encontrados nesse trabalho e aqueles obtidos para a mesma liga quando solidificada direcionalmente nos sistemas verticais ascendente e descendente, sob as mesmas condições assumidas. Finalmente, os resultados experimentais obtidos são comparados com valores fornecidos por alguns modelos teóricos propostos na literatura para analisar espaçamentos dendríticos primários.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As ligas Al-Sn são amplamente utilizados em aplicações tribológicas. Nesse estudo, análises térmica, microestrutural e dureza (HV) foram realizadas ao longo de um lingote da liga Al-5,5%Sn, obtido por solidificação direcional horizontal transitória. Os principais parâmetros analisados incluem a velocidade de deslocamento da isoterma liquidus (VL) e a taxa de resfriamento (TR). Esses parâmetros térmicos desempenham um papel fundamental na formação da microestrutura. A microestrutura dendrítica foi caracterizada através dos espaçamentos dentríticos primários (λ1), os quais foram determinados, experimentalmente, e correlacionados com VL, e TR. O comportamento apresentado pela liga Al- 5,5% Sn, durante a solidificação,é semelhante ao de outras ligas de alumínio, isto é, observa-se rede dendrítica mais grosseira com a diminuição da taxa de resfriamento, indicando que a imiscibilidade entre o alumínio e estanho não tem um efeito significativo sobre o relação entre o espaçamento dendrítico primário e taxa de resfriamento. A dependência da microdureza em VL, TR e no λ1 foi também analisada. Verificaram-se menores valores de HV para maiores TR. Por outro lado, os valores HV aumentam com valores crescentes de λ1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report new archeointensity data obtained from the analyses of baked clay elements (architectural and kiln brick fragments) sampled in Southeast Brazil and historically and/or archeologically dated between the end of the XVIth century and the beginning of the XXth century AD. The results were determined using the classical Thellier and Thellier protocol as modified by Coe, including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and the Triaxe protocol, which involves continuous high-temperature magnetization measurements. In both protocols, TRM anisotropy and cooling rate TRM dependence effects were taken into account for intensity determinations which were successfully performed for 150 specimens from 43 fragments, with a good agreement between intensity results obtained from the two procedures. Nine site-mean intensity values were derived from three to eight fragments and defined with standard deviations of less than 8%. The site-mean values vary from similar to 25 mu T to similar to 42 mu T and describe in Southeast Brazil a continuous decreasing trend by similar to 5 mu T per century between similar to 1600 AD and similar to 1900 AD. Their comparison with recent archeointensity results obtained from Northeast Brazil and reduced at a same latitude shows that: (1) the geocentric axial dipole approximation is not valid between these southeastern and northeastern regions of Brazil, whose latitudes differ by similar to 10 degrees, and (2) the available global geomagnetic field models (gufm1 models, their recalibrated versions and the CALSK3 models) are not sufficiently precise to reliably reproduce the non-dipole field effects which prevailed in Brazil for at least the 1600-1750 period. The large non-dipole contribution thus highlighted is most probably linked to the evolution of the South Atlantic Magnetic Anomaly (SAMA) during that period. Furthermore, although our dataset is limited, the Brazilian archeointensity data appear to support the view of a rather oscillatory behavior of the axial dipole moment during the past three centuries that would have been marked in particular by a moderate increase between the end of the XVIIIth century and the middle of the XIXth century followed by the well-known decrease from 1840 AD attested by direct measurements. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geomagnetic field variations at archeomagnetic timescales can be obtained from well-dated heated structures and archeological potsherds. Here, we present the first archeointensity results obtained oil Portuguese ceramics (1550 to 1750 AD) collected at Brazilian archeological sites. The results are compared to those obtained from `Western Europe and currently available geomagnetic field models. Continuous thermomagnetic and IRM acquisitions curves indicate that Ti-poor titanomagnetite is responsible for the remanence in these ceramic fragments. Five fragments (24 samples) out of twelve analyzed yielded reliable intensity estimates. The row archeointensity data were corrected for TRM anisotropy and cooling rate effect. The mean dipole moments are obtained for three different age intervals: 1550 +/- 30 AD, 1600 +/- 30 AD and 1750 +/- 50 AD. Mean intensities vary from 37.9 +/- 4.2 mu T to 54.8 +/- 7.6 mu T in agreement with the previously reported data for 1550 AD and 1750 AD. Relatively weaker, but still highly dispersed, values were obtained for 1600 AD ceramics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents the first archeointensity results from Northeast Brazil obtained from 14 groups of architectural brick fragments sampled in the city of Salvador, Bahia State (13 degrees S, 38.5 degrees W) and dated between the middle of the XVIth century and the beginning of the XIXth century. The dating is ascertained by historical documents complemented by archeological constraints, yielding in all cases age uncertainties of less than 50 years. Analyses were carried out using two experimental protocols: 1 the ""zero field-in field"" version of the classical Thellier and Thellier method as proposed by Coe (TT-ZI), including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and 2 the Triaxe procedure involving continuous high temperature magnetization measurements. Both TRM anisotropy and cooling rate effects were taken into account for the intensity determinations. The cooling rate effect was further explored for the TT-ZI protocol using three increasing slow cooling times (5 h, 10 h and 25 h) between 450 C and room temperature. Following archeological constraints, the slowest cooling time was retained in our study, yielding decreases of the raw intensity values by 4% to 14%. For each fragment, a mean intensity was computed and retained only when the data obtained from all specimens (between 2 and 6) satisfied a coherence test at similar to 5%. A total of 57 fragments (183 specimens) was considered for the computations of site-mean intensity values, with derived standard deviations of less than 8% of the corresponding means. When separately computed using the two experimental techniques, the site-mean intensity values always agree to within 5%. A good consistency is observed between intensity values of similar or close ages, which strengthen their reliability. Our data principally show a significant and continuous decrease in geomagnetic field intensity in Northeast Brazil between the first half of the XVIIth century and the XXth century. One result dated to the second half of the XVIth century further suggests that the geomagnetic field intensity reached a maximum around 1600 AD. This evolution is in good agreement with that expected in the city of Salvador from the available global geomagnetic field models. However, the accuracy of these models appears less well constrained between similar to 1550 AD and similar to 1650 AD. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives were to evaluate the reexpansion blastocoele rate, post-thaw viability, and in vitro development of canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol (GLY) or 1.5 m ethylene glycol (EG). Fifty-one in vivo-produced canine blastocysts were randomly allocated in two groups: GLY (n = 26) and EG (n = 25). After thawing, embryos from MO were immediately stained with the fluorescent probes propidium iodide and Hoechst 33 342 to evaluate cellular viability. Frozen-thawed embryos from M3 and M6 were cultured in SOFaa medium + 10% FCS at 38.5 degrees C under an atmosphere of 5% CO2 with maximum humidity, for 3 and 6 days, respectively, and similarly stained. The blastocoele reexpansion rate (24 h after in vitro culture) did not differ between GLY (76.5%) and EG (68.8%). Post-thaw viable cells rate were not significantly different between GLY and EG (66.5 +/- 4.8 and 57.3 +/- 4.8, respectively, mean +/- SEM), or among MO (62.3 +/- 5.7%), M3 (56.9 +/- 6.0%), and M6 (66.5 +/- 6.0%). In conclusion, canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol or 1.5 m ethylene glycol, had satisfactory blastocoele reexpansion rates, similar post-thawing viability, and remained viable for up to 6 days of in vitro culture. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of delta ferrite fraction was measured with the magnetic method in specimens of different stainless steel compositions cast by the investment casting (lost wax) process. Ferrite fraction measurements published in the literature for stainless steel cast samples were added to the present work data, enabling an extensive analysis about practical methods to calculate delta ferrite fractions in stainless steel castings. Nineteen different versions of practical methods were formed using Schaeffler, DeLong, and Siewert diagrams and the nickel and chromium equivalent indexes suggested by several authors. These methods were evaluated by a detailed statistical analysis, showing that the Siewert diagram, including its equivalent indexes and iso-ferrite lines, gives the lowest relative errors between calculated and measured delta ferrite fractions. Although originally created for stainless steel welds, this diagram gives relative errors lower than those for the current ASTM standard method (800/A 800M-01), developed to predict ferrite fractions in stainless steel castings. Practical methods originated from a combination of different chromium/nickel equivalent indexes and the iso-ferrite lines from Schaeffler diagram give the lowest relative errors when compared with combinations using other iso-ferrite line diagrams. For the samples cast in the present work, an increase in cooling rate from 0.78 to 2.7 K/s caused a decrease in the delta ferrite fraction, but a statistical hypothesis test revealed that this effect is significant in only 50% of the samples that have ferrite in their microstructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The success of semen cryopreservation is influenced by several factors, such as freezing curves and cryoprotectants. These two factors are of special interest once they may lead to many important physical-chemical changes resulting in different degrees of damage in spermatozoa structure. This experiment was designed to compare the effect of bull semen cryopreservation using two freezing techniques: conventional (CT cooling rate of -0.55 degrees C min-1 and freezing rate of -19.1 degrees C min-1) and automated (AT cooling rate of -0.23 degrees C min-1 and freezing rate of -15 degrees C min-1), performed with different curves, and with three cryoprotectants (glycerol, ethylene glycol and dimethyl formamide) on bovine sperm motility and integrity of plasma, acrosomal and mitochondrial membranes. These variables were simultaneously evaluated using the fluorescence probes propidium iodide, fluorescein-conjugated Pisum sativum agglutinin and MitoTracker Green FM. The effects of freezing techniques, as well as of different cryoprotectants were analysed by the analysis of variance. The means were compared by Fishers test. There were no significant differences between freezing techniques (P > 0.05). Glycerol showed higher percentages of motility, vigour and integrity of plasma, acrosomal and mitochondrial membranes than other two cryoprotectants (P < 0.05). Ethylene glycol preserved higher motility and integrity of plasma and mitochondrial membranes than dimethyl formamide (P < 0.05). Sperm motility with glycerol was 30.67 +/- 1.41% and 30.50 +/- 1.06%, with ethylene glycol was 21.17 +/- 1.66% and 21.67 +/- 1.13% and with dimethyl formamide was 8.33 +/- 0.65% and 9.17 +/- 0.72% to CT and AT curves, respectively. The percentage of spermatozoa with simultaneously intact plasma membrane, intact acrosome and mitochondrial function (IPIAH) was 14.82 +/- 1.49% (CT) and 15.83 +/- 1.26% (AT) to glycerol, 9.20 +/- 1.31% (CT) and 9.92 +/- 1.29% (AT) to ethylene glycol 4.65 +/- 0.93% (CT) and 5.17 +/- 0.87% (AT) to dimethyl formamide. Glycerol provided the best results, although nearly 85% of spermatozoa showed some degree of injury in their membranes, suggesting that further studies are required to improve the results of cryopreservation of bovine semen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(U-Th)/He and fission-track analyses of apatite along deep-seated tunnels crossing high-relief mountain ranges offer the opportunity to investigate climate and tectonic forcing on the topographic evolution. In this study, the thermochronologic analysis of a large set of samples collected in the Simplon railway tunnel (western-central Alps; Italy and Switzerland) and along its surface trace, coupled with kinematic and structural analysis of major fault zones intersecting the tunnel, constrains the phenomena controlling the topographic and structural evolution, during the latest stage of exhumation of the Simplon Massif, and the timing in which they operated. The study area is located at the western margin of the Lepontine metamorphic dome where a complex nappe-stack pertaining to the Penninic and Ultrahelvetic domains experienced a fast exhumation from the latest Oligocene onward. The exhumation was mainly accommodated by a west-dipping low-angle detachment (the Simplon Fault Zone) which is located just 8 km to the west of the tunnel. However, along the section itself several faults related to two principal phases both with important dip-slip kinematics have been detected. Cooling rates derived from our thermocronological data vary from about 10 °C/Ma at about 10 Ma to about 35 °C/Ma in the last 5 Ma. Such increase in the cooling rate corresponds to the most important climatic change recorded in the northern hemisphere in the last 10 Ma, i.e. the shift to wetter conditions at the end of the Messinian salinity crisis and the inception of glacial cycles in the northern hemisphere. In addition, (U-Th)/He and fission-track age patterns lack of important correlation with the topography suggesting that the present-day relief morphology is the result of recent erosional dynamics. More in details, the (U-Th)/He tunnel ages show an impressive uniformity at 2 Ma, whereas cooling rates calculated at 1 Ma increase towards the two major valleys. This indicates a focusing of erosive processes in the valleys which led to the shaping of present-day topography. Structural analysis documents the presence of two phases of brittle deformation postdating the metamorphic phases in the area. The first one is directly related to the last phase of activity along the Simplon Fault Zone and is characterized by extension towards SO and vertical shortening. The young one is characterized by extension towards NO and horizontal shortening in a along the NE-SO direction. Structures related to the first phase of brittle deformation generate important variations in the older ages' dataset, until 3 Ma, suggesting that tectonics controlled rocks exhumation up to that age. Structures related to the second phase generate some variations also in the younger age dataset, highlighting the activity of faults bordering the massif and suggesting a continuous activity also after 2 Ma. However, most of (U-Th)/He tunnel ages, varying slightly around 2 Ma, document that the Simplon area has experienced primarily erosional exhumation in this time span. In conclusion, all our data suggest that in the central Italian Alps the climatic signal gradually overrode the tectonic effects after about 5 Ma, as a consequence of the climatic instability started at end of Messinian salinity crisis and improved by the onset of glaciations in the northern hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of the present study is to understand the mechanism of mass transfer, the composition and the role of fluids during crustal metasomatism in high-temperature metamorphic terranes. A well constrained case study, a locality at Rupaha, Sri Lanka was selected. It is located in the Highland Complex of Sri Lanka, which represents a small, but important fragment of the super-continent Gondwana. Excellent exposures of ultramafic rocks, which are embedded in granulites, were found at 10 localities. These provide a unique background for understanding the metasomatic processes. The boundary between the ultramafic and the granulite rocks are lined with metasomatic reaction zones up to 50cm in width. Progressing from the ultramafics to the granulite host rock, three distinct zones with the following mineral assemblages can be distinguished: (1). phlogopite + spinel + sapphirine, (2). spinel + sapphirine and (3). corundum + biotite + plagioclase. In order to assess the P-T-t path, the peak metamorphism and the exhumation history were constrained using different thermobarometers, as well as a diffusion model of garnet zoning. A maximum temperature of 875 ± 20oC (Opx-Cpx thermometer) and at the peak pressure of 9.0 ± 0.1 kbar (Grt-Cpx-Pl-Qtz) was calculated for the silicic granulite. The ultramafic rocks recorded a peak temperature of 840 ± 70oC (Opx-Cpx thermometer) at 9 kbar. Coexisting spinel and sapphirine from the reaction zone yield a temperature of 820 ± 40oC. This is in agreement with the peak-temperatures recorded in the adjacent granulites and ultramafics rocks. The structural concordance of the ultramafic rocks with the siliceous granulite host rock further support the suggestion, that all units have experienced the same peak metamorphism. Diffusion modeling of retrograde zoning in garnets from mafic granulites suggests a three-step cooling history. A maximum cooling rate of 1oC/Ma is estimated during the initial stage of cooling, followed by a cooling rate of ~30oC/Ma. The outermost rims of garnet indicate a slightly slower cooling rate at about 10-15oC/Ma. The sequences of mineral zones, containing a variety of Al-rich, silica undersaturated minerals in the reaction zones separating the ultramafic rocks from the silica-rich rocks can be explained by a diffusion model. This involves the diffusion of Mg from ultramafic rocks across the layers, and K and Si diffuse in opposite direction. Chemical potential of Mg and Si generated continuous monotonic gradient, allowing steady state diffusional transport across the profile. The strong enrichment in Al, and the considerable loss of Si, during the formation of reaction bands can be inferred from isocon diagrams. Some Al was probably added to the reaction zones, while Si was lost. This is most likely due to fluids percolating parallel to the zones at the boundary of the rock units. This study has shown that not only pressure and temperature conditions but most importantly PH2O and the concentration of the chlorine and fluorine in aqueous fluids also control the mass transport in different geological environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit dem Phasenverhalten von Polyethylen (PE) in nicht-reaktiven und in reaktiven Systemen. Von drei eng verteilten Polyethylenen (Mw = 6,4, 82 bzw. 380 kg/mol) in n-Hexan sowie für das System 2,2-Dimethylbutan / PE 82 wurde die Entmischung in Abhängigkeit von der Zusammensetzung, dem Druck und der Temperatur experimentell bestimmt. Die Modellierung der Trübungskurven erfolgte nach der Theorie von Sanchez und Lacombe. Dieser Ansatz beschreibt die Ergebnisse qualitativ und kann in einem engen Temperatur- und Druckbereich für gegebenes Molekulargewicht die kritische Temperatur und den kritischen Druck quantitativ vorhersagen. Durch Extrapolation der kritischen Temperatur der verschiedenen Lösungen von PE in n-Hexan auf unendliches Molekulargewicht nach Shultz-Flory wurde im Druckbereich von 20 bis 100 bar und im Temperaturbereich von 130 bis 200 °C eine Grenzlinie bestimmt. Diese Linie trennt unabhängig vom Molekulargewicht des Polymers und der Zusammensetzung der Mischung das Zweiphasengebiet vom homogenen Bereich. Im Fall des Mischlösungsmittels n-Hexan / 2,2-Dimethylbutan wurde für eine annähernd kritische Polymerkonzentration die Abhängigkeit der Entmischungsbedingungen von der Zusammensetzung untersucht. Durch einfache Erweiterung der Sanchez-Lacombe-Theorie und Einführen eines Fitparameters konnte das ternäre System beschrieben werden. An einer breit verteilten PE-Probe wurden Experimente zur Fraktionierung von PE in n-Hexan durchgeführt. Die Analyse der in den koexistenten Phasen enthaltenen Polymere lieferte Informationen über die Konzentration und die Molekulargewichtsverteilung des PE in diesen Phasen sowie die kritische Zusammensetzung der Mischung. Von verschiedenen PE-Lösungen (Mw = 0,5 kg/mol) wurde die polymerisationsinduzierte Phasenseparation in Isobornylmethacrylat mit und ohne Vernetzer untersucht. Mit 15 Gew.-% PE und in Abwesenheit von Vernetzer findet die Entmischung erst bei hohen Umsätzen statt. Die Charakterisierung der resultierenden Proben zeigte, dass sich etwas mehr als 5 Gew.-% PE im Polyisobornylmethacrylat lösen. Die Glasübergangstemperaturen der Polymermischungen steigen mit steigender Vernetzer- und sinkender Polyethylenkonzentration. Bei Proben mit 15 Gew.-% PE zeigte sich folgendes: 5 Gew.-% Vernetzer führen zu großen PE-Bereichen (150 - 200 nm) in der Matrix und der Kristallinitätsgrad ist gering. Bei der Polymermischung mit 10 Gew.-% Vernetzer bilden sich sehr kleine Polyethylenkristalle (< 80 nm) und der Kristallinitätsgrad ist hoch. Ohne Vernetzer hängt der Kristallinitätsgrad - wie bei reinem PE - von der Abkühlrate ab, mit Vernetzer ist er von ihr unabhängig.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neben astronomischen Beobachtungen mittels boden- und satellitengestützer Instrumente existiert ein weiterer experimenteller Zugang zu astrophysikalischen Fragestellungen in Form einer Auswahl extraterrestrischen Materials, das für Laboruntersuchungen zur Verfügung steht. Hierzu zählen interplanetare Staubpartikel, Proben, die von Raumfahrzeugen zur Erde zurückgebracht wurden und primitive Meteorite. Von besonderem Interesse sind sog. primitive kohlige Chondrite, eine Klasse von Meteoriten, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden. Sie enthalten neben frühem solarem Material präsolare Minerale, die in Sternwinden von Supernovae und roten Riesensternen kondensiert sind und die Bildung unseres Sonnensystems weitgehend unverändert überstanden haben. Strukturelle, chemische und isotopische Analysen dieser Proben besitzen demnach eine große Relevanz für eine Vielzahl astrophysikalischer Forschungsgebiete. Im Rahmen der vorliegenden Arbeit wurden Laboranalysen mittels modernster physikalischer Methoden an Bestandteilen primitiver Meteorite durchgeführt. Aufgrund der Vielfalt der zu untersuchenden Eigenschaften und der geringen Größen der analysierten Partikel zwischen wenigen Nanometern und einigen Mikrometern mussten hierbei hohe Anforderungen an Nachweiseffizienz und Ortsauflösung gestellt werden. Durch die Kombination verschiedener Methoden wurde ein neuer methodologischer Ansatz zur Analyse präsolarer Minerale (beispielsweise SiC) entwickelt. Aufgrund geringer Mengen verfügbaren Materials basiert dieses Konzept auf der parallelen nichtdestruktiven Vorcharakterisierung einer Vielzahl präsolarer Partikel im Hinblick auf ihren Gehalt diagnostischer Spurenelemente. Eine anschließende massenspektrometrische Untersuchung identifizierter Partikel mit hohen Konzentrationen interessanter Elemente ist in der Lage, Informationen zu nukleosynthetischen Bedingungen in ihren stellaren Quellen zu liefern. Weiterhin wurden Analysen meteoritischer Nanodiamanten durchgeführt, deren geringe Größen von wenigen Nanometern zu stark modifizierten Festkörpereigenschaften führen. Im Rahmen dieser Arbeit wurde eine quantitative Beschreibung von Quanteneinschluss-Effekten entwickelt, wie sie in diesen größenverteilten Halbleiter-Nanopartikeln auftreten. Die abgeleiteten Ergebnisse besitzen Relevanz für nanotechnologische Forschungen. Den Kern der vorliegenden Arbeit bilden Untersuchungen an frühen solaren Partikeln, sog. refraktären Metall Nuggets (RMN). Mit Hilfe struktureller, chemischer und isotopischer Analysen, sowie dem Vergleich der Ergebnisse mit thermodynamischen Rechnungen, konnte zum ersten Mal ein direkter Nachweis von Kondensationsprozessen im frühen solaren Nebel erbracht werden. Die analysierten RMN gehören zu den ersten Festkörperkondensaten, die im frühen Sonnensystem gebildet wurden und scheinen seit ihrer Entstehung nicht durch sekundäre Prozesse verändert worden zu sein. Weiterhin konnte erstmals die Abkühlrate des Gases des lokalen solaren Nebels, in dem die ersten Kondensationsprozesse stattfanden, zu 0.5 K/Jahr bestimmt werden, wodurch ein detaillierter Blick in die thermodynamische Geschichte des frühen Sonnensystems möglich wird. Die extrahierten Parameter haben weitreichende Auswirkungen auf die Modelle der Entstehung erster solarer Festkörper, welche die Grundbausteine der Planetenbildung darstellen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work focused mainly on two aspects of kinetics of phase separation in binary mixtures. In the first part, we studied the interplay of hydrodynamics and the phase separation of binary mixtures. A considerably flat container (a laterally extended geometry), at an aspect ratio of 14:1 (diameter: height) was chosen, so that any hydrodynamic instabilities, if they arise, could be tracked. Two binary mixtures were studied. One was a mixture of methanol and hexane, doped with 5% ethanol, which phase separated under cooling. The second was a mixture of butoxyethanol and water, doped with 2% decane, which phase separated under heating. The dopants were added to bring down the phase transition temperature around room temperature.rnrnAlthough much work has been done already on classical hydrodynamic instabilities, not much has been done in the understanding of the coupling between phase separation and hydrodynamic instabilities. This work aimed at understanding the influence of phase separation in initiating any hydrodynamic instability, and also vice versa. Another aim was to understand the influence of the applied temperature protocol on the emergence of patterns characteristic to hydrodynamic instabilities. rnrnOn slowly cooling the system continuously, at specific cooling rates, patterns were observed in the first mixture, at the start of phase separation. They resembled the patterns observed in classical Rayleigh-Bénard instability, which arises when a liquid continuously is heated from below. To suppress this classical convection, the cooling setup was tuned such that the lower side of the sample always remained cooler by a few millikelvins, relative to the top. We found that the nature of patterns changed with different cooling rates, with stable patterns appearing for a specific cooling rate (1K/h). On the basis of the cooling protocol, we estimated a modified Rayleigh number for our system. We found that the estimated modified Rayleigh number is near the critical value for instability, for cooling rates between 0.5K/h and 1K/h. This is consistent with our experimental findings. rnrnThe origin of the patterns, in spite of the lower side being relatively colder with respect to the top, points to two possible reasons. 1) During phase separation droplets of either phases are formed, which releases a latent heat. Our microcalorimetry measurements show that the rise in temperature during the first phase separation is in the order of 10-20millikelvins, which in some cases is enough to reverse the applied temperature bias. Thus phase separation in itself initiates a hydrodynamic instability. 2) The second reason comes from the cooling protocol itself. The sample was cooled from above and below. At sufficiently high cooling rates, there are situations where the interior of the sample is relatively hotter than both top and bottom of the sample. This is sufficient to create an instability within the cell. Our experiments at higher cooling rates (5K/h and above) show complex patterns, which hints that there is enough convection even before phase separation occurs. Infact, theoretical work done by Dr.Hayase show that patterns could arise in a system without latent heat, with symmetrical cooling from top and bottom. The simulations also show that the patterns do not span the entire height of the sample cell. This is again consistent with the cell sizes measured in our experiment.rnrnThe second mixture also showed patterns at specific heating rates, when it was continuously heated inducing phase separation. In this case though, the sample was turbid for a long time until patterns appeared. A meniscus was most probably formed before the patterns emerged. We attribute the reason of patterns in this case to Marangoni convection, which is present in systems with an interface, where local differences in surface tension give rise to an instability. Our estimates for the Rayleigh number also show a significantly lower number than that's required for RB-type instability.rnrnIn the first part of the work, therefore, we identify two different kinds of hydrodynamic instabilities in two different mixtures. Both are observed during, or after the first phase separation. Our patterns compare with the classical convection patterns, but here the origins are from phase separation and the cooling protocol.rnrnIn the second part of the work, we focused on the kinetics of phase separation in a polymer solution (polystyrene and methylcyclohexane), which is cooled continuously far down into the two phase region. Oscillations in turbidity, denoting material exchange between the phases are seen. Three processes contribute to the phase separation: Nucleation of droplets, their growth and coalescence, and their subsequent sedimentation. Experiments in low molecular binary mixtures had led to models of oscillation [43] which considered sedimentation time scales much faster than the time scales of nucleation and growth. The size and shape of the sample therefore did not matter in such situations. The oscillations in turbidity were volume-dominated. The present work aimed at understanding the influence of sedimentation time scales for polymer mixtures. Three heights of the sample with same composition were studied side by side. We found that periods increased with the sample height, thus showing that sedimentation time determines the period of oscillations in the polymer solutions. We experimented with different cooling rates and different compositions of the mixture, and we found that periods are still determined by the sample height, and therefore by sedimentation time. rnrnWe also see that turbidity emerges in two ways; either from the interface, or throughout the sample. We suggest that oscillations starting from the interface are due to satellite droplets that are formed on droplet coalescence at the interface. These satellite droplets are then advected to the top of the sample, and they grow, coalesce and sediment. This type of an oscillation wouldn't require the system to pass the energy barrier required for homogenous nucleation throughout the sample. This mechanism would work best in sample where the droplets could be effectively advected throughout the sample. In our experiments, we see more interface dominated oscillations in the smaller cells and lower cooling rates, where droplet advection is favourable. In larger samples and higher cooling rates, we mostly see that the whole sample becomes turbid homogenously, which requires the system to pass the energy barrier for homogenous nucleation.rnrnOscillations, in principle, occur since the system needs to pass an energy barrier for nucleation. The height of the barrier decreases with increasing supersaturation, which in turn is from the temperature ramp applied. This gives rise to a period where the system is clear, in between the turbid periods. At certain specific cooling rates, the system can follow a path such that the start of a turbid period coincides with the vanishing of the last turbid period, thus eliminating the clear periods. This means suppressions of oscillations altogether. In fact we experimentally present a case where, at a certain cooling rate, oscillations indeed vanish. rnrnThus we find through this work that the kinetics of phase separation in polymer solution is different from that of a low molecular system; sedimentation time scales become relevant, and therefore so does the shape and size of the sample. The role of interface in initiating turbid periods also become much more prominent in this system compared to that in low molecular mixtures.rnrnIn summary, some fundamental properties in the kinetics of phase separation in binary mixtures were studied. While the first part of the work described the close interplay of the first phase separation with hydrodynamic instabilities, the second part investigated the nature and determining factors of oscillations, when the system was cooled deep into the two phase region. Both cases show how the geometry of the cell can affect the kinetics of phase separation. This study leads to further fundamental understandings of the factors contributing to the kinetics of phase separation, and to the understandings of what can be controlled and tuned in practical cases. rn