11 resultados para Cooling rate

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I investigate some aspects of the thermal budget of pahoehoe lava flows. This is done with a combination of general field observations, quantitative modeling, and specific field experiments. The results of this work apply to pahoehoe flows in general, even though the vast bulk of the work has been conducted on the lavas formed by the Pu'u 'O'o - Kupaianaha eruption of Kilauea Volcano on Hawai'i. The field observations rely heavily on discussions with the staff of the United States Geological Survey's Hawaiian Volcano Observatory (HVO), under whom I labored repeatedly in 1991-1993 for a period totaling about 10 months.

The quantitative models I have constructed are based on the physical processes observed by others and myself to be active on pahoehoe lava flows. By building up these models from the basic physical principles involved, this work avoids many of the pitfalls of earlier attempts to fit field observations with "intuitively appropriate" mathematical expressions. Unlike many earlier works, my model results can be analyzed in terms of the interactions between the different physical processes. I constructed models to: (1) describe the initial cooling of small pahoehoe flow lobes and (2) understand the thermal budget of lava tubes.

The field experiments were designed either to validate model results or to constrain key input parameters. In support of the cooling model for pahoehoe flow lobes, attempts were made to measure: (1) the cooling within the flow lobes, (2) the amount of heat transported away from the lava by wind, and (3) the growth of the crust on the lobes. Field data collected by Jones [1992], Hon et al. [1994b], and Denlinger [Keszthelyi and Denlinger, in prep.] were also particularly useful in constraining my cooling model for flow lobes. Most of the field observations I have used to constrain the thermal budget of lava tubes were collected by HVO (geological and geophysical monitoring) and the Jet Propulsion Laboratory (airborne infrared imagery [Realmuto et al., 1992]). I was able to assist HVO for part of their lava tube monitoring program and also to collect helicopterborne and ground-based IR video in collaboration with JPL [Keszthelyi et al., 1993].

The most significant results of this work are (1) the quantitative demonstration that the emplacement of pahoehoe and 'a'a flows are the fundamentally different, (2) confirmation that even the longest lava flows observed in our Solar System could have formed as low effusion rate, tube-fed pahoehoe flows, and (3) the recognition that the atmosphere plays a very important role throughout the cooling of history of pahoehoe lava flows. In addition to answering specific questions about the thermal budget of tube-fed pahoehoe lava flows, this thesis has led to some additional, more general, insights into the emplacement of these lava flows. This general understanding of the tube-fed pahoehoe lava flow as a system has suggested foci for future research in this part of physical volcanology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by means of perturbed equilibrium techniques. We have prepared a three electron reduced, CO inhibited form of the enzyme in which cytochrome a and copper A are partially reduced an in intramolecular redox equilibrium. When these samples were photolyzed using a nitrogen laser (0.6 µs, 1.0 mJ pulses) changes in absorbance at 598 nm and 830 nm were observed which are consistent with a fast electron from cytochrome a to copper A. The absorbance changes at 598 nm have an apparent rate of 17,200 ± 1,700 s^(-1) (1σ), at pH 7.0 and 25.5 °C. These changes were not observed in either the CO mixed valence or CO inhibited fully reduced forms of the enzyme. The rate is fastest at about pH 8.0, and falls off in either direction, and there is a small, but clear temperature dependence. The process was also observed in the cytochrome c -- cytochrome c oxidase high affinity complex.

This rate is far faster than any rate measured or inferred previously for the cytochrome a -- copper A electron equilibration, but the interpretation of these results is hampered by the fact that the relaxation could only be followed during the time before CO became rebound to the oxygen binding site. The meaning of our our measured rate is discussed, along with other reported rates for this process. In addition, a temperature-jump experiment on the same system is discussed.

We have also prepared a partially reduced, cyanide inhibited form of the enzyme in which cytochrome a, copper A and copper B are partially reduced and in redox equilibrium. Warming these samples produced absorbance changes at 605 nm which indicate that cytochrome a was becoming more oxidized, but there were no parallel changes in absorbance at 830 nm as would be expected if copper A was becoming reduced. We concluded that electrons were being redistributed from cytochrome a to copper B. The kinetics of the absorbance changes at 605 nm were investigated by temperature-jump methods. Although a rate could not be resolved, we concluded that the process must occur with an (apparent) rate larger than 10,000 s^(-1).

During the course of the temperature-jump experiments, we also found that non-redox related, temperature dependent absorbance changes in fully reduced CO inhibited cytochrome c oxidase, and in the cyanide mixed valence enzyme, took place with an (apparent) rate faster that 30,000 s^(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine stratocumulus clouds are generally optically thick and shallow, exerting a net cooling influence on climate. Changes in atmospheric aerosol levels alter cloud microphysics (e.g., droplet size) and cloud macrophysics (e.g., liquid water path, cloud thickness), thereby affecting cloud albedo and Earth’s radiative balance. To understand the aerosol-cloud-precipitation interactions and to explore the dynamical effects, three-dimensional large-eddy simulations (LES) with detailed bin-resolved microphysics are performed to explore the diurnal variation of marine stratocumulus clouds under different aerosol levels and environmental conditions. It is shown that the marine stratocumulus cloud albedo is sensitive to aerosol perturbation under clean background conditions, and to environmental conditions such as large-scale divergence rate and free tropospheric humidity.

Based on the in-situ Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) during Jul. and Aug. 2011, and A-Train satellite observation of 589 individual ship tracks during Jun. 2006-Dec. 2009, an analysis of cloud albedo responses in ship tracks is presented. It is found that the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. Under closed cell structure (i.e., cloud cells ringed by a perimeter of clear air), with sufficiently dry air above cloud tops and/or higher cloud top heights, the cloud albedo can become lower in ship tracks. Based on the satellite data, nearly 25% of ship tracks exhibited a decreased albedo. The cloud macrophysical responses are crucial in determining both the strength and the sign of the cloud albedo response to aerosols.

To understand the aerosol indirect effects on global marine warm clouds, multisensory satellite observations, including CloudSat, MODIS, CALIPSO, AMSR-E, ECMWF, CERES, and NCEP, have been applied to study the sensitivity of cloud properties to aerosol levels and to large scale environmental conditions. With an estimate of anthropogenic aerosol fraction, the global aerosol indirect radiative forcing has been assessed.

As the coupling among aerosol, cloud, precipitation, and meteorological conditions in the marine boundary layer is complex, the integration of LES modeling, in-situ aircraft measurements, and global multisensory satellite data analyses improves our understanding of this complex system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.

In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.

In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.

Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.

In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.

In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.

In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.

The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improved measurement of the neutrino mass via β decay spectroscopy requires the development of new energy measurement techniques and a new β decay source. A promising proposal is to measure the β energy by the frequency of the cyclotron radiation emitted in a magnetic field and to use a high purity atomic tritium source. This thesis examines the feasibility of using a magnetic trap to create and maintain such a source. We demonstrate that the loss rate due to β decay heating is not a limiting factor for the design. We also calculate the loss rate due to evaporative cooling and propose that the tritium can be cooled sufficiently during trap loading as to render this negligible. We further demonstrate a design for the magnetic field which produces a highly uniform field over a large fraction of the trap volume as needed for cyclotron frequency spectroscopy while still providing effective trapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft hierarchical materials often present unique functional properties that are sensitive to the geometry and organization of their micro- and nano-structural features across different lengthscales. Carbon Nanotube (CNT) foams are hierarchical materials with fibrous morphology that are known for their remarkable physical, chemical and electrical properties. Their complex microstructure has led them to exhibit intriguing mechanical responses at different length-scales and in different loading regimes. Even though these materials have been studied for mechanical behavior over the past few years, their response at high-rate finite deformations and the influence of their microstructure on bulk mechanical behavior and energy dissipative characteristics remain elusive.

In this dissertation, we study the response of aligned CNT foams at the high strain-rate regime of 102 - 104 s-1. We investigate their bulk dynamic response and the fundamental deformation mechanisms at different lengthscales, and correlate them to the microstructural characteristics of the foams. We develop an experimental platform, with which to study the mechanics of CNT foams in high-rate deformations, that includes direct measurements of the strain and transmitted forces, and allows for a full field visualization of the sample’s deformation through high-speed microscopy.

We synthesize various CNT foams (e.g., vertically aligned CNT (VACNT) foams, helical CNT foams, micro-architectured VACNT foams and VACNT foams with microscale heterogeneities) and show that the bulk functional properties of these materials are highly tunable either by tailoring their microstructure during synthesis or by designing micro-architectures that exploit the principles of structural mechanics. We also develop numerical models to describe the bulk dynamic response using multiscale mass-spring models and identify the mechanical properties at length scales that are smaller than the sample height.

The ability to control the geometry of microstructural features, and their local interactions, allows the creation of novel hierarchical materials with desired functional properties. The fundamental understanding provided by this work on the key structure-function relations that govern the bulk response of CNT foams can be extended to other fibrous, soft and hierarchical materials. The findings can be used to design materials with tailored properties for different engineering applications, like vibration damping, impact mitigation and packaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.

The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.

The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.

Part II

The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.

For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.

The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.

Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.

In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.

In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.

Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal reaction between nitrogen dioxide and acetaldehyde in the gas phase was investigated at room temperature and atmospheric pressure. The initial rate of disappearance of nitrogen dioxide was 1.00 ± 0.03 order with respect to nitrogen dioxide and 1.00 ± 0.07 order with respect to acetaldehyde. An initial second order rate constant of (8.596 ± 0.189) x 10-3 1.mole-1 sec-1 was obtained at 22.0 ± 0.1 °C and a total pressure of one atmosphere. The activation energy of the reaction was 12,900 cal/mole in the temperature range between 22°C and 122°C.

The products of the reaction were nitric oxide, carbon dioxide, methyl nitrite, nitromethane and a trace amount of trans-dimeric nitrosomethane. The addition of nitric oxide increased the rate of formation of nitromethane and decreased the rate of formation of methyl nitrite. There were no measurable surface effects due to the addition of glass wool or glass beads to the reactor.

Reactants and products were analyzed by gas chromatography. A mechanism was proposed incorporating the principal features of the reaction.