925 resultados para Complex Systems Science
Resumo:
La siguiente monografía busca dar una mirada descriptiva a la cultura corporativa y a su relación con el desempeño organizacional desde la perspectiva de las ciencias de la complejidad. Inicialmente presenta una mirada general de la definición de cultura y caracteriza los sistemas complejos para luego proceder a examinar como algunos fenómenos de la complejidad se ven reflejados en la cultura, revisando la propuesta de Dolan et al, que proponen los valores como atractores en el desempeño. Adicionalmente se examinan distintas formas y definiciones de desempeño organizacional y se identifican algunos estudios que apuntan a la correlación entre culturas fuertes y desempeño. Sin embargo Gordon & DiTomaso concluyen que no se comprende muy bien cómo funciona la relación más allá de la correlación. Finalmente se concluye que la complejidad presenta una opción para explicar cómo puede funcionar la relación entre cultura y desempeño a través de los valores como un elemento cultural que lleva a la emergencia. Sin embargo queda la incógnita sobre la aplicabilidad de estrategias para implementar lo estudiado en organizaciones y en el uso de herramientas de simulación para profundizar en la investigación
Resumo:
Los resultados financieros de las organizaciones son objeto de estudio y análisis permanente, predecir sus comportamientos es una tarea permanente de empresarios, inversionistas, analistas y académicos. En el presente trabajo se explora el impacto del tamaño de los activos (valor total de los activos) en la cuenta de resultados operativos y netos, analizando inicialmente la relación entre dichas variables con indicadores tradicionales del análisis financiero como es el caso de la rentabilidad operativa y neta y con elementos de estadística descriptiva que permiten calificar los datos utilizados como lineales o no lineales. Descubriendo posteriormente que los resultados financieros de las empresas vigiladas por la Superintendencia de Sociedades para el año 2012, tienen un comportamiento no lineal, de esta manera se procede a analizar la relación de los activos y los resultados con la utilización de espacios de fase y análisis de recurrencia, herramientas útiles para sistemas caóticos y complejos. Para el desarrollo de la investigación y la revisión de la relación entre las variables de activos y resultados financieros se tomó como fuente de información los reportes financieros del cierre del año 2012 de la Superintendencia de Sociedades (Superintendencia de Sociedades, 2012).
Resumo:
Este proyecto busca determinar que utilización se hace de los conceptos de caos y complejidad en las empresas del sector financiero colombiano, para así encontrar la relación entre estos conceptos y la ocurrencia de eventos en la economía actual. Se adoptó un método descriptivo, donde se tomará como unidad de análisis una empresa representativa del sector financiero de Colombia. La compañía escogida para el análisis fue Bancolombia, la cual debido a su larga trayectoria dentro de la economía colombiana, ha demostrado un buen desempeño y el logro de sus objetivos a nivel nacional e internacional. El análisis realizado permitió tener una visión amplia y representativa del significado que el caos y la complejidad tienen para el sector financiero; y como sus respectivos conceptos se aplican a la hora de enfrentar condiciones extremas en la industria o la economía. Pero también como el comportamiento de variables pertenecientes a otras industrias, tienen la capacidad de afectar e influir en el normal comportamiento de la compañía. Se concluyó además que Bancolombia en épocas de crisis logra ser mucho más realista al afrontar los momentos. Las crisis se muestran como caos dentro de un sistema simple y organizado que afecta a sus diferentes variables no lineales, y que puede llegar a una interacción entre otros sistemas, produciendo así comportamientos críticos y complicados. Se muestra también que la complejidad dentro de un sistema financiero es una creación de interacciones simples que muestran un parámetro claro, casi deducible, que al interactuar entre todas se convierte en complejidad para las organizaciones como Bancolombia.
Resumo:
La presenta monografía constituye una profundización y ampliación en tres temas de interés: Cultura corporativa, ciencias de la complejidad y desempeño organizacional. Partiendo de un trabajo inicial que realiza una descripción de los anteriores conceptos y sus posibles relaciones, este trabajo resulta ser la continuación y adición de nuevas perspectivas con el fin de generar mayores aportes en el mundo académico y empresarial. Comienza con la Cultura corporativa y la identificación de sus componentes visibles, conjuntamente con una reflexión sobre este concepto como factor para la transformación y la aceptación del cambio en las organizaciones. Luego, retoma conceptos importantes en las Ciencias de la Complejidad y la teoría de sistemas como lo son los agentes, atractores, la no-linealidad y la auto-organización. Además se hace una revisión de los antecedentes y medidas actuales del desempeño organizacional, configurando al Alfa de Jensen como posible candidato para medir el impacto de la cultura corporativa manteniendo lo principios de las Ciencias de la complejidad.
Resumo:
En el contexto organizacional actual, que se caracteriza por ser hiper-conectado, cambiante, globalizado y cargado de incertidumbre, la capacidad de las organizaciones para identificar y tratar provechosamente el riesgo se hace necesaria e ineludible. Dicho más claro: gestionar adecuadamente el riesgo se convierte en un aspecto crítico para la perdurabilidad de las organizaciones. Más allá de las comprensiones tradicionales del riesgo, cuyo núcleo es el riesgo financiero, nuevas tendencias –más generales y abarcadoras– se han gestado en las últimas décadas. Una de la más destacada es la gestión del riesgo sistémico. Pese a este reconocimiento, sin embargo, siguen predominando los enfoques analítico-financieros, sobre todo en el ámbito latinoamericano. Este trabajo de grado pretende, por tanto, hacer un análisis sobre la gestión del riesgo sistémico e identificar las diferentes tendencias del riesgo y sus potencialidades de cara al ambiente organizacional actual.
Resumo:
Desde la noción universal sobre la empresa como un sistema de interacción con un entorno determinado para alcanzar un objetivo, de manera planificada y en función de satisfacer las demandas de un mercado mediante la actividad económica, su viabilidad, sostenibilidad y crecimiento dependerán, por supuesto, de una serie de estrategias adecuadas no solo para tales fines, sino también para enfrentar diversidad de agentes endógenos y exógenos que puedan afectar el normal desempeño de su gestión. Estamos hablando de la importancia de la resiliencia organizacional y del Capital Psicológico. En un escenario tan impredecible como el de la economía mundial, donde la constante son los cambios en su comportamiento —unos propios de su dinámica e interdependencia, naturales de fenómenos como la globalización, y otros derivados de eventos disruptivos— hoy más que nunca es necesario implementar el modelo de la empresa resiliente, que es aquella entidad capaz de adaptarse y recuperarse frente a una perturbación. Al mismo tiempo, más allá de su tamaño, naturaleza u objeto social, es indispensable reconocer básicamente que toda organización está constituida por personas, lo cual implica la trascendencia que para su funcionamiento tiene el factor humano-dependiente, y por lo tanto se crea la necesidad de promover el Capital Psicológico y la resiliencia a nivel de las organizaciones a través de una cultura empresarial.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. In this article, a new deterministic model is introduced which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the four major factors that affect the cyanobacterial bloom formation in freshwaters: light, nutrients, temperature and river flow. The model consists of two sub-models: a vertical migration model with respect to growth of cyanobacteria in relation to light, nutrients and temperature; and a hydraulic model to simulate the horizontal movement of the bloom. This article presents the model algorithms and highlights some important model results. The effects of nutrient limitation, varying illumination and river flow characteristics on cyanobacterial movement are simulated. The results indicate that under high light intensities and in nutrient-rich waters colonies sink further as a result of carbohydrate accumulation in the cells. In turbulent environments, vertical migration is retarded by vertical velocity component generated by turbulent shear stress. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The understanding of the statistical properties and of the dynamics of multistable systems is gaining more and more importance in a vast variety of scientific fields. This is especially relevant for the investigation of the tipping points of complex systems. Sometimes, in order to understand the time series of given observables exhibiting bimodal distributions, simple one-dimensional Langevin models are fitted to reproduce the observed statistical properties, and used to investing-ate the projected dynamics of the observable. This is of great relevance for studying potential catastrophic changes in the properties of the underlying system or resonant behaviours like those related to stochastic resonance-like mechanisms. In this paper, we propose a framework for encasing this kind of studies, using simple box models of the oceanic circulation and choosing as observable the strength of the thermohaline circulation. We study the statistical properties of the transitions between the two modes of operation of the thermohaline circulation under symmetric boundary forcings and test their agreement with simplified one-dimensional phenomenological theories. We extend our analysis to include stochastic resonance-like amplification processes. We conclude that fitted one-dimensional Langevin models, when closely scrutinised, may result to be more ad-hoc than they seem, lacking robustness and/or well-posedness. They should be treated with care, more as an empiric descriptive tool than as methodology with predictive power.
Resumo:
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
Relating system dynamics to the broad systems movement, the key notion is that reinforcing loops deserve no less attention than balancing loops. Three specific propositions follow. First, since reinforcing loops arise in surprising places, investigations of complex systems must consider their possible existence and potential impact. Second, because the strength of reinforcing loops can be misinferred - we include an example from the field of servomechanisms - computer simulation can be essential. Be it project management, corporate growth or inventory oscillation, simulation helps to assess consequences of reinforcing loops and options for interventions. Third, in social systems the consequences of reinforcing loops are not inevitable. Examples concerning globalization illustrate how difficult it might be to challenge such assumptions. However, system dynamics and ideas from contemporary social theory help to show that even the most complex social systems are, in principle, subject to human influence. In conclusion, by employing these ideas, by attending to reinforcing as well as balancing loops, system dynamics work can improve the understanding of social systems and illuminate our choices when attempting to steer them.
Resumo:
Paraconsistent logics are non-classical logics which allow non-trivial and consistent reasoning about inconsistent axioms. They have been pro- posed as a formal basis for handling inconsistent data, as commonly arise in human enterprises, and as methods for fuzzy reasoning, with applica- tions in Artificial Intelligence and the control of complex systems. Formalisations of paraconsistent logics usually require heroic mathe- matical efforts to provide a consistent axiomatisation of an inconsistent system. Here we use transreal arithmetic, which is known to be consis- tent, to arithmetise a paraconsistent logic. This is theoretically simple and should lead to efficient computer implementations. We introduce the metalogical principle of monotonicity which is a very simple way of making logics paraconsistent. Our logic has dialetheaic truth values which are both False and True. It allows contradictory propositions, allows variable contradictions, but blocks literal contradictions. Thus literal reasoning, in this logic, forms an on-the- y, syntactic partition of the propositions into internally consistent sets. We show how the set of all paraconsistent, possible worlds can be represented in a transreal space. During the development of our logic we discuss how other paraconsistent logics could be arithmetised in transreal arithmetic.