963 resultados para Coherent light emission
Resumo:
We report a novel and simple solution-based technique for depositing 2-D zinc oxide platelets at low temperature. Nanoplatelets that were mostly a-oriented associated with the Lotgering orientation factor of 0.65 were obtained by locating a glass substrate at a distance of about 5cm over the aqueous vapour of the boiling precursor. Experiments were carried out to optimize the coating parameters by placing the substrate at different positions, durations and the pH of the precursor. The X-ray diffraction studies confirmed the structure associated with the crystallites to be wurzite. The different morphology of the zinc oxide films and blue light emission were observed using scanning electron microscopy and fluorescence spectroscopy respectively.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1-3 mu m length) were grown only in 1-5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the < 0001 > crystallographic direction. The coated nanorods were found to be highly dense having a thickness of similar to 1-3 mu m over the entire area 20 mm x 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser.
Resumo:
Eu2+ ion doped into a suitable host results in an efficient luminophore with engineering relevance; however stabilizing this ion in a host is known to be a challenge. Here we report a novel approach for the synthesis of efficient CaAl2O4 phosphor containing Eu2+ luminophore and Cr3+ activator. CaAl2O4:Eu2+, Cr3+ is prepared by a solution combustion (SCS) method using (i) urea, (ii) oxalyl dihydrazide (ODH) and (iii) fuel-blend (in which overall fuel to oxidizer ratio (F/O) = 1). A Multi-channel thermocouple setup is used to measure the flame temperatures to study the nature of combustion of various fuel mixtures. The variation of adiabatic flame temperature is calculated theoretically for different urea/ODH mixture ratios according to thermodynamic concept and correlated with the observed flame temperatures. Blue emission of the CaAl2O4:Eu2+ phosphor is enhanced similar to 20 times using the fuel-blend approach. Using the observed reaction kinetics, and the known chemistry of smoldering type combustion, a mechanism is proposed for the observed stabilization of Eu2+ ion in the fuel-blend case. This also explains the observed improvement in blue light emission. We show that the right choice of the fuel ratio is essential for enhancing photoluminescence (PL) emission. The PL intensity is highest for ODH lean and urea rich combination (i.e. when the ratio of ODH:urea is 1:5); measured color purity is comparable to commercial blue phosphor, BAM:Eu2+. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.
Resumo:
Using coherent light interrogating a turbid object perturbed by a focused ultrasound (US) beam, we demonstrate localized measurement of dynamics in the focal region, termed the region-of-interest (ROI), from the decay of the modulation in intensity autocorrelation of light. When the ROI contains a pipe flow, the decay is shown to be sensitive to the average flow velocity from which the mean-squared displacement (MSD) of the scattering centers in the flow can be estimated. While the MSD estimated is seen to be an order of magnitude higher than that obtainable through the usual diffusing wave spectroscopy (DWS) without the US, it is seen to be more accurate as verified by the volume flow estimated from it. It is further observed that, whereas the MSD from the localized measurement grows with time as tau(alpha) with alpha approximate to 1.65, without using the US, a is seen to be much less. Moreover, with the local measurement, this super-diffusive nature of the pipe flow is seen to persist longer, i.e., over a wider range of initial tau, than with the unassisted DWS. The reason for the super-diffusivity of flow, i.e., alpha < 2, in the ROI is the presence of a fluctuating (thermodynamically nonequilibrium) component in the dynamics induced by the US forcing. Beyond this initial range, both methods measure MSDs that rise linearly with time, indicating that ballistic and near-ballistic photons hardly capture anything beyond the background Brownian motion. (C) 2015 Optical Society of America
Resumo:
We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.
Resumo:
与传统的相干激光光束的评价不同, 对部分相干光束质量进行评价时, 不仅要反映其远场发散特性, 而且还要能体现光源本身的部分相干性。根据部分相干光的相干模表示法, 推导了由部分相干光源所产生光束的相位空间积Q。与前人在相干光源情形下得到的结论相比, 得出的相位空简积Q不仅包含各个全相干模基元线性组合的贡献, 而且还有来自不同的全相干模基元之间相互作用的贡献。
Resumo:
abstract {We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. © 2007 Society of Photo-Optical Instrumentation Engineers.}
Resumo:
实验研究了腔内位相锁定来至一LAD侧面抽运的Nd:YAG板条的两束激光,输出镜面出现干涉条纹,获得1.13W的相干光,其组束效率达到64.9%,相干度约60%。实验中发现只需要一根作为滤波的金属丝放在离输出镜合适的位置都就能有效稳定干涉条纹,金属丝引起的损耗低于8%。
Resumo:
实验采用三倍频Nd:YAG(波长355nm,脉宽8ns,频率30Hz)脉冲激光器作为抽运光源,在ZnO纳米粉末(直径~100nm)中发现了类似激光现象.并用环形腔理论模拟了ZnO的颗粒密度对平均自由程的影响,从理论上证明在纳秒级激光器的抽运下,ZnO纳米粉末也可以发射激光.
Resumo:
在充分考虑了空间背景光辐射特性以及漫反射目标对相干光和自然光的不同反射特性的基础上,利用信号检测的统计学方法,导出了空间电荷耦合器件(CCD)凝视成像跟踪系统分别在激光照明主动跟踪模式和太阳光照明被动跟踪模式下的作用距离表达式。结果表明,空间CCD凝视成像跟踪系统在脉冲能量为1mJ的激光照明主动跟踪模式下可对1m2空间漫反射目标实现10km量级范围内的跟踪;而利用太阳光照明的被动跟踪模式下的跟踪距离可达几百千米。
Resumo:
Photoluminescence of undoped and B-doped ZnO in silicate glasses was investigated by varying the concentration of ZnO (3550 mol%) and B dopant (0-10 mol%) in the glass matrices. The broad and intense near band edge emissions were observed while the visible light emission was very weak. UV luminescence in all samples was red-shifted relative to the exciton transition in bulk ZnO and enhanced by decreased ZnO concentration due to higher degree of structural integrity and the lower aggregation degree of ZnO. Donor B dopant played the double roles of filling conduction bands to broaden band gap when its concentration was lower than 5 mol%, and emerging with conduction bands to narrow the gap when B dopant exceeded this value. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
ZnO:Zn phosphor thin films were prepared by face-to-face annealing at 450 degrees C in air. The effects of the face-to-face annealing on the structural and optical properties of the ZnO films were investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. Measurement results showed that the crystal quality of ZnO films was improved by face-to-face annealing. Both UV light emission and visible light emission were enhanced compared to those of open annealing films. The UV emission peak was observed to have a blueshift towards higher energy. The optical band-gap edge of as-annealed films shifted towards longer wavelength. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
氧化锌作为新一代化合物半导体,其禁带宽度对应紫外光的波长。氧化锌薄膜有望开发蓝光、蓝绿光、紫外光等多种发光器件,具有广阔的应用前景。重点介绍了氧化锌薄膜的研究进展以及存在的问题,并对氧化锌薄膜的未来进行了展望。