995 resultados para Classification tests
Resumo:
The micro-scale abrasive wear test by rotative ball has gained large acceptance in universities and research centers, being widely used in studies on the abrasive wear of materials. Two wear modes are usually observed in this type of test: ""rolling abrasion"" results when the abrasive particles roll on the surface of the tested specimen, while ""grooving abrasion"" is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Several works on the friction coefficient during abrasive wear tests are available in the literature, but only a few were dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. Additionally, recent works have identified that results may also be affected by the change in contact pressure that occurs when tests are conducted with constant applied force. Thus, the purpose of this work is to study the relationship between friction coefficient and abrasive wear modes in ball-cratering wear tests conducted at ""constant normal force"" and ""constant pressure"". Micro-scale abrasive wear tests were conducted with a ball of AISI52100 steel and a specimen of AISIH10 tool steel. The abrasive slurry was prepared with black silicon carbide (SiC) particles (average particle size of 3 mu m) and distilled water. Two constant normal force values and two constant pressure values were selected for the tests. The tangential and normal loads were monitored throughout the tests and their ratio was calculated to provide an indication of the friction coefficient. In all cases, optical microscopy analysis of the worn craters revelated only the presence of grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results have also shown that: (i) for the selected values of constant normal force and constant pressure, the friction coefficient presents, approximately, the same range of values and (ii) loading conditions play an important role on the occurrence of rolling abrasion or grooving abrasion and, consequently, on the average value and scatter of the friction coefficient in micro-abrasive wear tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
This paper presents first material tests on HDPE and PVC, and subsequently impact tests on plates made of the same materials. Finally, numerical simulations of the plate impact tests are compared with the experimental results. A rather comprehensive series of mechanical material tests were performed to disclose the behaviour of PVC and HDPE in tension and compression. Quasi-static tests were carried out at three rates in compression and two in tension. Digital image correlation. DIC, was used to measure the in-plane strains, revealing true stress-strain curves and allowing to analyze strain-rate sensitivity and isotropy of Poisson`s ratio. In addition, dynamic compression tests were carried out in a split-Hopkinson pressure bar. Quasi-static and dynamic tests were also performed on clamped plates made of the same PVC and HDPE materials, using an optical technique to measure the full-field out-of-plane deformations. These tests, together with the material data, were used for comparative purposes of a finite element analysis. A reasonable agreement between experimental and numerical results was achieved. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.
Resumo:
In this work, a series of two-dimensional plane-strain finite element analyses was conducted to further understand the stress distribution during tensile tests on coated systems. Besides the film and the substrate, the finite element model also considered a number of cracks perpendicular to the film/substrate interface. Different from analyses commonly found in the literature, the mechanical behavior of both film and substrate was considered elastic-perfectly plastic in part of the analyses. Together with the film yield stress and the number of film cracks, other variables that were considered were crack tip geometry, the distance between two consecutive cracks and the presence of an interlayer. The analysis was based on the normal stresses parallel to the loading axis (sigma(xx)), which are responsible for cohesive failures that are observed in the film during this type of test. Results indicated that some configurations studied in this work have significantly reduced the value of sigma(xx) at the film/substrate interface and close to the pre-defined crack tips. Furthermore, in all the cases studied the values of sigma(xx) were systematically larger at the film/substrate interface than at the film surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective To describe onset features, classification and treatment of juvenile dermatomyositis (JDM) and juvenile polymyositis (JPM) from a multicentre registry. Methods Inclusion criteria were onset age lower than 18 years and a diagnosis of any idiopathic inflammatory myopathy (IIM) by attending physician. Bohan & Peter (1975) criteria categorisation was established by a scoring algorithm to define JDM and JPM based oil clinical protocol data. Results Of the 189 cases included, 178 were classified as JDM, 9 as JPM (19.8: 1) and 2 did not fit the criteria; 6.9% had features of chronic arthritis and connective tissue disease overlap. Diagnosis classification agreement occurred in 66.1%. Medial? onset age was 7 years, median follow-up duration was 3.6 years. Malignancy was described in 2 (1.1%) cases. Muscle weakness occurred in 95.8%; heliotrope rash 83.5%; Gottron plaques 83.1%; 92% had at least one abnormal muscle enzyme result. Muscle biopsy performed in 74.6% was abnormal in 91.5% and electromyogram performed in 39.2% resulted abnormal in 93.2%. Logistic regression analysis was done in 66 cases with all parameters assessed and only aldolase resulted significant, as independent variable for definite JDM (OR=5.4, 95%CI 1.2-24.4, p=0.03). Regarding treatment, 97.9% received steroids; 72% had in addition at least one: methotrexate (75.7%), hydroxychloroquine (64.7%), cyclosporine A (20.6%), IV immunoglobulin (20.6%), azathioprine (10.3%) or cyclophosphamide (9.6%). In this series 24.3% developed calcinosis and mortality rate was 4.2%. Conclusion Evaluation of predefined criteria set for a valid diagnosis indicated aldolase as the most important parameter associated with de, methotrexate combination, was the most indicated treatment.
Resumo:
Mehlich-1, resin-HCO(3), and Pi tests were used to assess available P in an acid tropical Oxisol in Brazil treated with gypsum, which has been preferred over lime to ameliorate the Al toxicity in the subsoil. The soil was incubated in the laboratory at rates up to 75 g kg(-1) of phosphogypsum (PG) containing 0.3% total P, natural gypsum, or reagent-grade gypsum, and up to 100 mg P kg(-1) as triple superphosphate (TSP) or phosphate rock (PR). In the greenhouse, two consecutive maize crops were grown on the soil treated with 50 mg P kg(-1) of TSP and PG rates up to 75 g kg(-1). The results of the incubation study showed that Mehlich-P and Pi-P increased with increasing PG rate for the treatments of TSP, PR, and control. Resin-HCO(3) underestimated available P from TSP and PR because of the reaction between resin-HCO(3) and gypsum. Mehlich-1 overestimated available P from PR compared with TSP because of an excessive dissolution of PR by the strongly acidic Mehlich-1. Pi underestimated available P from PR in the treatments of natural and reagent-grade gypsum because of Ca common-ion effect from gypsum on depressing PR dissolution. The results in terms of the effect of PG on available P are similar in both incubation and greenhouse studies. Both Mehlich-P and Pi-P correlated well with P uptake by maize, whereas resin-P did not.
Resumo:
Tests to determine the physiological potential of squash seeds. This work aimed to determine the efficiency of different tests to access the physiological potential of squash sced lots. Six seed lots were submitted to germination and vigor tests (germination first count; speed of germination; cool germination; accelerated aging; seedling emergence; seedlings growth and dry biomass (root, hypocotyl and total) and plants (root, stem and total length, root, stem, root plus stem, leaves and total). A completely randomized design was used with four replicates The averages were compared by the Tukey test (p <= 0.05). Pearson`s correlation test was also performed. The germination first count, speed of germination, accelerated aging, root plus stem and leaves dry biomass from plants evaluated in the 21(st) day after sowing can be used to determine the physiological potential of squash seeds.
Resumo:
Oxidative stress is a physiological condition that is associated with atherosclerosis. and it can be influenced by diet. Our objective was to group fifty-seven individuals with dyslipidaemia controlled by statins according to four oxidative biomarkers, and to evaluate the diet pattern and blood biochemistry differences between these groups. Blood samples were collected and the following parameters were evaluated: diet intake; plasma fatty acids; lipoprotein concentration; glucose; oxidised LDL (oxLDL); malondialdehyde (MDA): total antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability power assays. Individuals were separated into five groups by cluster analysis. All groups showed a difference with respect to at least one of the four oxidative stress biomarkers. The separation of individuals in the first axis was based upon their total antioxidant activity. Clusters located on the right side showed higher total antioxidant activity, higher myristic fatty acid and lower arachidonic fatty acid proportions than clusters located on the left side. A negative correlation was observed between DPPH and the peroxidability index. The second axis showed differences in oxidation status as measured by MDA and oxLDL concentrations. Clusters located on the Upper side showed higher oxidative status and lower HDL cholesterol concentration than clusters located on the lower side. There were no differences in diet among the five clusters. Therefore, fatty acid synthesis and HDL cholesterol concentration seem to exert a more significant effect on the oxidative conditions of the individuals with dyslipidaemia controlled by statins than does their food intake.
Resumo:
The Biopharmaceutics Classification System (BCS) is a tool that was created to categorize drugs into different groups according to their solubility and permeability characteristics. Through a combination of these factors and physiological parameters, it is possible to understand the absorption behavior of a drug in the gastrointestinal tract, thus contributing to cost and time reductions in drug development, as well as reducing exposure of human subjects during in vivo trials. Solubility is attained by determining the equilibrium under conditions of physiological pH, while different methods may be employed for evaluating permeability. On the other hand, the intrinsic dissolution rate (IDR), which is defined as the rate of dissolution of a pure substance under constant temperature, pH, and surface area conditions, among others, may present greater correlation to the in vivo dissolution dynamic than the solubility test. The purpose of this work is to discuss the intrinsic dissolution test as a tool for determining the solubility of drugs within the scope of the Biopharmaceutics Classification System (BCS).
Resumo:
The USP General Chapter < 2040 > Disintegration and Dissolution of Dietary Supplements introduced a rupture test as a performance test of soft-shell capsules. Traditionally, the disintegration test was used for determining the disintegration time of all solid oral dosage forms. The aim of this investigation was to investigate differences between the rupture test and the disintegration test using soft-shell capsules. Five different soft-shell capsule products were chosen based on their filling contents and treated to simulate a production deficiency. The study design compared capsules as received with capsules that were treated by coating them with the liquid contents of another capsule. The capsules were incubated at room temperature and at 40 degrees C. The tests were repeated after two weeks, and at each time point, twelve capsules of each product were tested using the rupture and the disintegration tests. Six capsules were tested untreated, while the other six capsules were treated. Rupture and disintegration times were recorded as dependent variables in each experiment. Thedata were analyzed using ANOVA. According to the USP definition for disintegration, the rupture of a soft-shell capsule can be seen as fulfilling the disintegration criterion if the capsule contents is a semisolid or liquid. Statistical analysis showed no advantage of the rupture test over the disintegration test. On a product-by-product basis, both tests were sensitive to certain investigated parameters. A noticeable difference between both tests was that in most cases, the rupture test reached the defined endpoint faster than the disintegration test. Soft-shell capsules that are subject to a Quality by Design approach should be tested with both methods to determine which performance test is the most appropriate test for a specific product.
Resumo:
A chemotaxonomic analysis is described of a database containing various types of compounds from the Heliantheae tribe (Asteraceae) using Self-Organizing Maps (SOM). The numbers of occurrences of 9 chemical classes in different taxa of the tribe were used as variables. The study shows that SOM applied to chemical data can contribute to differentiate genera, subtribes, and groups of subtribes (subtribe branches), as well as to tribal and subtribal classifications of Heliantheae, exhibiting a high hit percentage comparable to that of an expert performance, and in agreement with the previous tribe classification proposed by Stuessy.
Resumo:
Recently, we have built a classification model that is capable of assigning a given sesquiterpene lactone (STL) into exactly one tribe of the plant family Asteraceae from which the STL has been isolated. Although many plant species are able to biosynthesize a set of peculiar compounds, the occurrence of the same secondary metabolites in more than one tribe of Asteraceae is frequent. Building on our previous work, in this paper, we explore the possibility of assigning an STL to more than one tribe (class) simultaneously. When an object may belong to more than one class simultaneously, it is called multilabeled. In this work, we present a general overview of the techniques available to examine multilabeled data. The problem of evaluating the performance of a multilabeled classifier is discussed. Two particular multilabeled classification methods-cross-training with support vector machines (ct-SVM) and multilabeled k-nearest neighbors (M-L-kNN)were applied to the classification of the STLs into seven tribes from the plant family Asteraceae. The results are compared to a single-label classification and are analyzed from a chemotaxonomic point of view. The multilabeled approach allowed us to (1) model the reality as closely as possible, (2) improve our understanding of the relationship between the secondary metabolite profiles of different Asteraceae tribes, and (3) significantly decrease the number of plant sources to be considered for finding a certain STL. The presented classification models are useful for the targeted collection of plants with the objective of finding plant sources of natural compounds that are biologically active or possess other specific properties of interest.
Resumo:
Background: It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. Objective: The purpose of this work was to obtain emulsions produced with Buriti oil and nonionic surfactants. Methods: Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75 degrees C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. Results: All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Conclusion: Based on these results, the emulsions obtained could be considered as promising delivery systems.
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.