924 resultados para Cl Channel
Resumo:
Rationale Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. Objectives: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. Methods. Sepsis was induced by cecal ligation and puncture (CLP) Measurements and Main Results. The pretreatments of mice with H2S donors (NaHS or Lawesson`s reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80% Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and L-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to similar to 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). Conclusions: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.
Resumo:
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Resumo:
Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
KCNQ1 (K(V)LQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study. the properties and regulation of the cloned sK(V)LQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (
Resumo:
The K+ channel KCNQ1 (K(V)LQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes, Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR.
Resumo:
The epithelial Na+ channel ENaC is inhibited when the cystic fibrosis transmembrane conductance regulator (CFTR) coexpressed in the same cell is activated by the cyclic adenosine monophosphate (cAMP)-dependent pathway. Regulation of ENaC by CFTR has been studied in detail in epithelial tissues from intestine and trachea and is also detected in renal cells. In the kidney, regulation of other membrane conductances might be the predominant function of CFTR. A similar inhibition of ENaC takes place when luminal purinergic receptors a re activated by 5 ' -adenosine triphosphate (ATP) or uridine triphosphate (UTP). Because both stimulation of purinergic receptors and activation of CFTR induce a Cl- conductance, it is likely that Cl- ions control ENaC activity.
Resumo:
1. K(V)LQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential Defects in ion channels have been demonstrated in cardiac arrhythmia. This channel is inhibited potently by the chromanol 293B, The same compound has been shown to block cAMP-dependent electrolyte secretion in rat and human colon, Therefore, it was suggested that a K+ channel similar to K(V)LQT1 is expressed in the colonic epithelium. 2, In the present paper, expression of K(V)LQT1 and its function in colonic epithelial cells is described. Reverse transcription-polymerase chain reaction analysis of rat colonic mucosa demonstrated expression of K(V)LQT1 in both crypt cells and surface epithelium. When expressed in Xenopus oocytes, K(V)LQT1 induced a typical delayed activated K+ current. 3, As demonstrated, the channel activity could be further activated by increases in intracellular cAMP. These and other data support the concept that K(V)LQT1 is forming a component of the basolateral cAMP-activated Kf conductance in the colonic epithelium.
Resumo:
It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
By exhibiting a violation of a novel form of the Bell-CHSH inequality, Żukowski has recently established that the quantum correlations exploited in the standard perfect teleportation protocol cannot be recovered by any local hidden variables model. In the case of imperfect teleportation, we show that a violation of a generalized form of Żukowski's teleportation inequality can only occur if the channel state, considered by itself, already violates a Bell-CHSH inequality. On the other hand, the fact that the channel state violates a Bell-CHSH inequality is not sufficient to imply a violation of Żukowski's teleportation inequality (or any of its generalizations). The implication does hold, however, if the fidelity of the teleportation exceeds ≈ 0.90. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This study compared the effects of zinc and odorants on the voltage-gated K+ channel of rat olfactory neurons. Zinc reduced current magnitude, depolarized the voltage activation curve and slowed activation kinetics without affecting inactivation or deactivation kinetics. Zinc inhibition was potentiated by the NO compound, S-nitroso-cysteine. The pH- and diethylpyrocarbonate-dependence of zinc inhibition suggested that zinc acted by binding to histidine residues. Cysteine residues were eliminated as contributing to the zinc-binding site. The odorants, acetophenone and amyl acetate, also reduced current magnitude, depolarized the voltage activation curve and selectively slowed activation kinetics. Furthermore, the diethylpyrocarbonate- and pH-dependence of odorant inhibition implied that the odorants also bind to histidine residues. Zinc inhibitory potency was dramatically diminished in the presence of odorants, implying competition for a common binding site. These observations indicate that the odorants and zinc share a common inhibitory binding site on the external surface of the voltage-gated K+ channel.
Resumo:
Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.