837 resultados para Camundongos isogênicos
Resumo:
Introdução: Modelos experimentais de indução da carcinogênese pancreática são necessários para melhor compreensão da biologia tumoral e para estudar os efeitos de agentes promotores ou protetores. Objetivos: Avaliar os efeitos do álcool e da cafeína na carcinogênese pancreática induzida pelo 7,12- dimetilbenzantraceno (DMBA), aplicando a classificação sistematizada de neoplasias intra-epitelias pancreáticas (PanIN) de Hruban e cols. (2001)(1) em camundongos. Métodos: Cento e vinte camundongos mus musculus, machos, adultos foram divididos em quatro grupos. Em todos os animais foi induzida a carcinogênese pancreática pela implantação de 1mg de DMBA no pâncreas dos animais. Os animais recebiam ou água ou cafeína ou álcool ou álcool+cafeína de acordo com seu grupo. Para a análise histológica do pâncreas, adotou-se a classificação sistematizada das lesões precursoras (PanIN). Resultados: No grupo água + DMBA, 16,6% dos animais desenvolveram adenocarcinoma ductal pancreático (ADP) e 66,6% apresentaram neoplasias intra-epiteliais pancreáticas (PanIN). No grupo álcool + DMBA, 52,9% desenvolveram ADP (p<0,05) e 35,3% PanIN. No grupo cafeína + DMBA, 15% apresentaram ADP e 65% PanIN. No grupo álcool+cafeína + DMBA, 23,8% desenvolveram ADP e 71,4% PanIN. Conclusões: O modelo experimental de carcinogênese pancreática em camundongos utilizando o DMBA, é eficaz na indução de lesões precursoras e de adenocarcinoma pancreático. O álcool está associado ao aumento da freqüência de adenocarcinoma pancreático, enquanto que a cafeína não demonstrou este efeito.
Resumo:
studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins
Resumo:
The frequency of disseminated candidiasis caused by yeast has enhancing in intensive care unit. Despite the availability of new antifungal drugs, C. albicans sepsis mortality causes can be as high as 30-40%. So, it has been needed to looking for a new therapeutic medicament that helps in treatment and prevention of this infection. Previous data that demonstrated that particulated β-glucan stimulates the immune system and experiments of this work were conducted to investigating if β-glucan extracted from Saccharomices cerevisiae, could modified the evolution of mouse model C. albicans systemic infection. Balb/c mice with sepsis and β-1,3 glucan treated or not were analyzed the influence of β-1,3 glucan in survival of the animals, in the fungal burdens in kidney, in the production of urea and TNF even in the histopathology of kidney. The experiments shown that the infected animals a nd glucan treated had great survival (p<0,05), less unit form colony in kidney and normal levels of urea. In the kidney histopathology of not glucan treated animals it has seen more lesions when compared with treated animals. So we conclude that β-1,3 glucan could stimulate the immune system against disseminated C. albicans
Resumo:
The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process
Resumo:
Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders
Resumo:
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor. Preclinical studies have shown that NPSR receptor activation can promote arousal, anxiolytic-like behavioral, decrease in food intake, besides hyperlocomotion, which is a robust but not well understood phenomenon. Previous findings suggest that dopamine transmission plays a crucial role in NPS hyperactivity. Considering the close relationship between dopamine and Parkinson Disease (PD), and also that NPSR receptors are expressed on dopaminergic nuclei in the brain, the current study attempted to investigate the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of 6-OHDA and systemic administration of haloperidol. Motor deficits induced by 6-OHDA and haloperidol were evaluated on Swiss mice in the rota-rod and catalepsy test. Time on the rotating rod and time spent immobile in the elevated bar were measured respectively in each test. L-Dopa, a classic antiparkinsonian drug, and NPS were administrated in mice submitted to one of the animal models of PD related above. 6-OHDA injection evoked severe motor impairments in rota-rod test, while the cataleptic behavior of 6-OHDA injected mice was largely variable. The administration of L-Dopa (25 mg/kg) and NPS (0,1 and 1 nmol) reversed motor impairments induced by 6-OHDA in the rota-rod. Haloperidolinduced motor deficits on rota-rod and catalepsy tests which were reversed by L-Dopa (100 e 400 mg/kg), but not by NPS (0,1 and 1 nmol) administration. The association of L-Dopa 10 mg/kg and NPS 1 nmol was also unable to counteract haloperidol-induced motor deficits. To summarize, 6-OHDA-, but not haloperidol-, induced motor deficits were reversed by the central administration of NPS. These data suggest that NPS possibly facilitates dopamine release in basal ganglia, what would explain the overcome of motor performance promoted by NPS administration in animals pretreated with 6-OHDA, but not haloperidol. Finally, the presented findings point, for the first time, to the potential of NPSR agonist as an innovative treatment for PD.
Resumo:
The protozoan parasite Toxoplasma gondii transforms the innate aversion of rats for cat urine into a fatal attraction, that increases the likelihood of the parasite completing its life cycle in the cat s intestine. The neural circuits implicated in innate fear, anxiety, and learned fear all overlap considerably, raising the possibility, that T. gondii may disrupt all of these nonspecifically. In this study, we evaluated immunoreactivity for tyrosine hydroxylase (TH) in areas associated with innate fear of infected male swiss mice. The latent Toxoplasma infection converted the aversion of mice to feline odors into attraction. This loss of fear is remarkably specific, as demonstrated by Vyas et al (2007), because infection did not diminish learned fear, anxiety-like behavior, olfaction, or nonaversive learning. However, the neurochemical mechanism related to alterations in innate fear due to T. gondii infection remains poorly studied. 20 mice were inoculated with bradyzoites (25 cysts) from a Toxoplasma gondii (Me-49 strain). The brains were removed after 60 days, sectioned and processed for TH immunohistochemistry. The correlation between the amount of cysts per area and the densitometric analysis of neurotransmitter reactivity was low in the areas implicated in innate fear of infected animals, when comparated with noninfected controls
Resumo:
The physiologist H. Selye defined stress as the nonspecific response of the body to any factors that endanger homeostasis (balance of internal environment) of the individual. These factors, agents stressors, are able to activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, thus resulting in the physiological responses to stress by the release of glucocorticoids that leads to psychophysiological changes, including effects on cognitive functions such as learning and memory. When this axis is acutely stimulated occurs a repertoire of behavioral and physiological changes can be adaptive to the individual. Notwithstanding, when the HPA axis is chronically stimulated, changes may favor the development of, such as anxiety disorders. Some drugs used in the clinic for the treatment of anxiety disorders these can exert effects on cognitive function, on the HPA axis and on the anxiety. In this context, the aim of our study was to investigate the effects of administration i.p. acute of diazepam (DZP, 2 mg/kg), buspirone (BUS, 3 mg/kg), mirtazapine (MIR, 10 mg/kg) and fluoxetine (FLU, 10 mg/kg) in male mice submitted to acute restraint stress, and evaluated using plus-maze discriminative avoidance task (PMDAT), which simultaneously evaluates parameters such as learning, memory and anxiety. Our results demonstrated that (1) the administration of DZP and BUS, but not FLU, promoted anxiolytic effects in animals; (2) administration mirtazapine caused sedative effect to animals; (3) in the training session, the animals treated with BUS, MIR and FLU learned the task, on the other hand DZP group showed impairment in learning; (4) in the test session, animals treated with DZP, BUS, and MIR showed deficits in relation to discrimination between the enclosed arms, aversive versus non-aversive arm, demonstrating an impairment in memory, however, animals treated with FLU showed no interference in the retrieval of this memory; (5) acute stress did not interfere in locomotor activity, anxiety, or learning on the learning task, but induced impairment in retrieval memory, and the group treated with FLU did not demonstrated this deficit of memory . These results suggest that acute administration of drugs with anxiolytic and antidepressant activity does not interfere with the learning process this aversive task, but impair its retrieval, as well as the acute restraint stress. However, the antidepressant fluoxetine was able to reverse memory deficits promoted by acute stress, which may suggest that modulation, even acutely serotonergic neurotransmission, by selectively inhibiting the reuptake of this neurotransmitter, interferes on the process of retrieval of an aversive memory
Resumo:
The formulation of a drug can interfere with its absorption into the circulatory system and may result in changes in the dose required to achieve that particular effect. The aim of this study was to determine the lethal dose 50 (LD 50) and 100 (LD100) of a nanoemulsion of propofol and the lipid emulsion in mice intraperitoneally. One hundred sixty animals weighing 36.47 +/- 4.6g, which were distributed randomly into two groups: NANO and EMU who received propofol 1% in the nanoemulsion and lipid emulsion, respectively, intraperitoneally. Began with a dose of 250mg/kg (n=10) and from this isdecreased or increased the dose until achieving 0 and 100% of deaths in each group thus formed were seven subgroups in NANO (each subgroup n = 10) at doses 200, 250, 325, 350, 400, 425 and 475 mg/kg and in EMU eight subgroups (n= 10 each subset) 250, 325, 350, 400, 425, 475, 525 and 575 mg/kg. In the CONTROL group (n= 10) animals received saline in the largest volume used in the other groups to rule out death by the volume injected. Analysis of LD 50 and LD 100 were obtained by linear regression. The LD 50 was 320, 95 mg / kg and 4243, 51mg / kg and the LD 100 was445.99 mg / kg and 595.31 mg / kg to groups NANO and EMU, respectively. It follows that nanoemulsion is propofol in 25% more potent compared to the lipid emulsionintraperitoneally.
Resumo:
Medicamentos homeopáticos como o Symphytum officinalle e a Calendula officinallis são dotados de propriedades anti-sépticas, antiinflamatória, cicatrizantes e também agem como promotores da consolidação de fraturas ósseas. Neste trabalho, uniram-se esses dois medicamentos similares em um complexo para verificar o seu efeito no reparo em feridas de extração dentária em camundongos. O complexo Symphytum officinalle e Calendula officinallis nas potências de 6CH e 3CH, respectivamente, foi ministrado por via oral ao grupo tratado durante 5 dias antes e após a extração do incisivo superior direito. No grupo controle, administraram-se 5ml de álcool etílico a 70% diluídos em 30 ml de soro fisiológico. Após a proservação, os animais foram sacrificados, a maxila direita separada da esquerda, fixada e processada para inclusão em parafina. Após a microtomia, os cortes obtidos foram corados pela H/E. A análise histológica mostrou que, tanto no grupo controle como no tratado, o alvéolo dentário estava preenchido por tecido de granulação e tecido ósseo neoformado, com graus variáveis de maturação, rico em osteócitos. No entanto, nos animais tratados, o processo de reparo em feridas após extração dentária do incisivo superior direito mostrou um avanço progressivo de neoformação óssea mais acentuado quando comparado ao grupo controle, em tempos equivalentes. Estes resultados enfatizam as propriedades biológicas do complexo Symphytum officinalle e Calendula officinallis e sua possível utilização como recurso terapêutico na Odontologia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anticorpos para antígenos cardíacos foram analisados por ELISA em 14 soros de camundongos Balb/c hiperimunizados com Streptococcus mutans, inativado pelo formaldeído. Os níveis de anticorpos da classe IgG anticoração e antimiosina elevaram-se significativamente nos animais imunizados quando comparados com os controles, especialmente no grupo A, imunizado e reestimulado com antígenos solúveis de S. mutans. Neste grupo, os resultados do Western Blot mostraram reatividade com miosina cardíaca e uma banda de 35 kDa. A análise histológica dos corações dos animais do grupo B, imunizado e reestimulado com antígenos de superfície do microrganismo, demonstrou a presença de degeneração celular, tipo hidrópica e hialina e focos inflamatórios constituídos de linfócitos e macrófagos no miocárdio e pericárdio. Os resultados deste trabalho reforçam a hipótese da existência de mimetismo antigênico entre tecido cardíaco e S. mutans e chamam a atenção para o risco de desenvolvimento de anticorpos reativos com antígenos próprios induzidos por vacina anticárie com componentes estreptocócicos.
Resumo:
No presente estudo pretendeu-se verificar a sensibilidade toxicológica e especificidade do Teste de Microfixação de Complemento (MCF) na detecção de toxinas botulínicas C e D no sobrenadante de cultivos bacterianos e em fígados de camundongos inoculados com doses letais e subletais. As toxinas foram produzidas em meio de cultura Hemoline, tituladas através da determinação da DL50 pelo Bioensaio em Camundongo e diluídas nas concentrações de 10, 1, 0,1, 0,01 e 0,001 DL50. Desta forma, foram utilizadas em dois modelos experimentais, onde foi determinada a sensibilidade toxicológica do MCF no sobrenadante do meio de cultura com as diluições descritas acima e ainda em extratos hepáticos de camundongos com peso corporal de 20g, inoculados com as mesmas diluições. A tentativa de evidenciação das toxinas botulínicas nos extratos hepáticos de camundongos foi realizada através da sua extração após a morte pela administração das doses letais e ainda pelo sacrifício dos animais inoculados com doses subletais, em intervalos de 5 dias. Os resultados evidenciaram uma sensibilidade toxicológica para o MCF de 100% para os dois tipos de toxinas ao nível de 0,01 DL50, quando testados os sobrenadantes de meio de cultura, portanto 100 vezes superior ao Bioensaio em Camundongo. A sensibilidade toxicológica do MCF, quando examinados extratos hepáticos de camundongos inoculados com 1 e 10 DL50 de toxinas botulínicas C e D, foi inferior, com valores de 100, 80, 89 e 72%, respectivamente. Pelo teste foi possível detectar toxinas botulínicas tipos C e D nos extratos hepáticos de camundongos inoculados com doses subletais até 15 dias após a sua inoculação. A especificidade do MCF foi de 88 e 92%, quando testados extratos hepáticos de camundongos sadios, e confrontados com as antitoxinas C e D; e 100% no sobrenadante do meio de cultura. Os resultados apontam para uma possível utilização do teste como importante instrumento de pesquisa e ainda na eventual substituição dos testes in vivo pelas suas implicações éticas e limitações práticas.