909 resultados para CLINICAL UTILITY
Resumo:
The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^
Resumo:
Opioids remain the drugs of choice in chronic pain treatment, but opioid tolerance, defined as a decrease in analgesic effect after prolonged or repeated use, dramatically limits their clinical utility. Opioid tolerance has classically been studied by implanting spinal catheters in animals for drug administration. This procedure has significant morbidity and mortality, as well as causing an inflammatory response which decreases the potency of opioid analgesia and possibly affects tolerance development. Therefore, we developed and validated a new method, intermittent lumbar puncture (Dautzenberg et al.), for the study of opioid analgesia and tolerance. Using this method, opioid tolerance was reliably induced without detectable morbidity. The dose of morphine needed to induce analgesia and tolerance using this method was about 100-fold lower than that required when using an intrathecal catheter. Only slight inflammation was found at the injection site, dissipated within seven mm. ^ DAMGO, an opioid μ receptor agonist, has been reported to inhibit morphine tolerance, but results from different studies are inconclusive. We evaluated the effect of DAMGO on morphine tolerance using our newly-developed ILP method, as well as other intrathecal catheter paradigms. We found that co-administration of sub-analgesic DAMGO with morphine using ILP did not inhibit morphine tolerance, but instead blocked the analgesic effects of morphine. Tolerance to morphine still developed. Tolerance to morphine can only be blocked by sub-analgesic dose of DAMGO when administered in a lumbar catheter, but not in cervical catheter settings. ^ Finally, we evaluated the effects of Gabapentin (GBP) on analgesia and morphine tolerance. We demonstrated that GBP enhanced analgesia mediated by both subanalgesic and analgesic doses of morphine although GBP itself was not analgesic. GBP increased potency and efficacy of morphine. GBP inhibited the expression, but not the development, of morphine tolerance. GBP blocked tolerance to analgesic morphine but not to subanalgesic morphine. GBP reversed the expression of morphine tolerance even after tolerance was established. These studies may begin to provide new insights into mechanisms of morphine tolerance development and improve clinical chronic pain management. ^
Resumo:
Opioids dominate the field of pain management because of their ability to provide analgesia in many medical circumstances. However, side effects including respiratory depression, constipation, tolerance, physical dependence, and the risk of addiction limit their clinical utility. Fear of these side effects results in the under-treatment of acute pain. For many years, research has focused on ways to improve the therapeutic index (the ratio of desirable analgesic effects to undesirable side effects) of opioids. One strategy, combining opioid agonists that bind to different opioid receptor types, may prove successful.^ We discovered that subcutaneous co-administration of a moderately analgesic dose of the mu-opioid receptor (MOR) selective agonist fentanyl (20μg/kg) with subanalgesic doses of the less MOR-specific agonist morphine (100ng/kg-100μg/kg), augmented acute fentanyl analgesia in rats. Parallel [35S]GTPγS binding studies using naïve rat substantia gelatinosa membrane treated with fentanyl (4μM) and morphine (1nM-1pM) demonstrated a 2-fold increase in total G-protein activation. This correlation between morphine-induced augmentation of fentanyl analgesia and G-protein activation led to our proposal that interactions between MORs and DORs underlie opioid-induced augmentation. We discovered that morphine-induced augmentation of fentanyl analgesia and G-protein activity was mediated by DORs. Adding the DOR-selective antagonist naltrindole (200ng/kg, 40nM) at doses that did not alter the analgesic or G-protein activation of fentanyl, blocked increases in analgesia and G-protein activation induced by fentanyl/morphine combinations. Equivalent doses of the MOR-selective antagonist cyprodime (20ng/kg, 4nM) did not block augmentation. Substitution of the DOR-selective agonist SNC80 for morphine yielded similar results, further supporting our conclusion that interactions between MORs and DORs are responsible for morphine-induced augmentation of fentanyl analgesia and G-protein activation. Confocal microscopy of rat substantia gelatinosa showed that changes in the rate of opioid receptor internalization did not account for these effects.^ In conclusion, fentanyl analgesia augmentation by subanalgesic morphine is mediated by increased G-protein activation resulting from functional interactions between MORs and DORs, not changes in MOR internalization. Additional animal and clinical studies are needed to determine whether side effect incidence changes following opioid co-administration. If side effect incidence decreases or remains unchanged, these findings could have important implications for clinical pain treatment. ^
Resumo:
Targeting the proteasome with the sole FDA approved proteasome inhibitor (PI), bortezomib, has been fruitful in specific cancers. Its success has generated an interest in next-generation PIs that might have a therapeutic advantage in cancers, such as leukemia, where bortezomib monotherapy was less effective. This study focuses on a novel, clinically relevant PI, NPI-0052. Experiments show that NPI-0052 targets chymotrypsin- and caspase-like activities more potently than the trypsin-like activity in leukemia cells. NPI-0052 induced apoptosis, as determined by caspase-3 activation and DNA fragmentation. Using caspase inhibitors and caspase-8 (I9.2) or FADD (I2.1) deficient cells revealed that caspase-8 was essential for NPI-0052-induced apoptosis. NPI-0052 killed cells via a caspase-8-tBid-mitochondrial pathway, relying on caspase-8, whereas bortezomib relies on several caspases. NPI-0052 increased reactive oxygen species (ROS) levels, which contributed towards cytotoxicity since an antioxidant conferred protection. To improve the clinical efficacy of PIs, NPI-0052 was combined with epigenetic anti-cancer agents, histone deacetylase inhibitors (HDACi). NPI-0052 with MS-275 or vorinostat (FDA approved HDACi), synergistically induced apoptosis more effectively than an HDACi/bortezomib regimen in Jurkat cells. Caspase-8 and ROS contributed towards NPI-0052/HDACi cytotoxicity and caspase-8 mediated superoxide production by NPI-0052 or NPI-0052/HDACi. The proximal targets of these agents: proteasome activity and histone acetylation were examined to determine if they contributed towards synergistic effects. HDACi targeted proteasomal β subunits and corresponding catalytic activities responsible for degrading proteins. Immunoblotting showed increases in histone-H3 expression and its acetylation with NPI-0052 or NPI-0052/HDACi in Jurkat and primary cells. Importantly, the hyper-acetylation by NPI-0052 was not detected with bortezomib, suggesting that this effect may be unique to NPI-0052. An antioxidant attenuated histone-H3 expression and acetylation induced by NPI-0052 alone or with HDACi. Furthermore, the hyper-acetylation by NPI-0052 relied on caspase-8. These novel results show that a PI is eliciting classical epigenetic alterations, demonstrated by hyper-acetylation of histone-H3. This alteration was oxidant and caspase-8 dependent. Overall, results reveal that caspase-8 mediates many effects induced by NPI-0052. Data show overlapping activities by NPI-0052 and HDACi which are contributing, along with caspase-8 activation and oxidative stress, to cytotoxic interactions in leukemia cells, reinforcing the potential clinical utility of combining these two compounds. ^
Resumo:
Background. Inhibition of tumor necrosis factor (TNF) is associated with progression of latent tuberculosis infection (LTBI) to active disease. LTBI screening prior to starting TNF inhibitor therapy is recommended. Blood tests, collectively known as interferon-gamma release assays (IGRAs), offer a means other than the tuberculin skin test (TST) of screening for LTBI. However, in the setting of immune compromise, anergy may limit the clinical utility of IGRAs. ^ Methods. A cross-sectional study was conducted in children and young adults ≤ 21 years of age who were cared for at Texas Children's Hospital in Houston, TX, during 2011 and who were candidates for, or were receiving, tumor necrosis factor (TNF)-inhibitor therapy. All subjects answered a risk factor questionnaire and were tested for LTBI by two commercially available IGRAs (QuantiFERON-Gold In-Tube assay and the T-SPOT.TB assay), along with the TST. T-cell phenotypes were evaluated through flow cytometry, both at baseline and after antigen stimulation. ^ Results. Twenty-eight subjects were enrolled. All were TST negative and none were IGRA positive. Results were negative for the 27 subjects who were tested with QuantiFERON-Gold In-Tube. However, 26% of subjects demonstrated anergy in the T-SPOT.T. Patients with T-SPOT. TB anergy had lower quantitative IFN-γ responses to mitogen in the QFT assay—the mean IFN-γ level to mitogen in patients without T-SPOT.TB anergy was 9.84 IU/ml compared to 6.91 IU/ml in patients with T-SPOT.TB anergy (P = 0.046). Age and use of TNF inhibitors, corticosteroids, or methotrexate use were not significantly associated with T-SPOT.TB anergy. Antigen stimulation revealed depressed expression of intracellular IFN-γ in subjects with T-SPOT. TB anergy. ^ Conclusions. The frequency of anergy in this population is higher than would be expected from studies in adults. There appears to be inappropriate IFN-γ responses to antigen in subjects with T-SPOT. TB anergy. This immune defect was detected by the T-SPOT. TB assay but not by the QuantiFERON-Gold In-Tube assay. Further data are needed to clarify the utility of IGRAs in this population.^
Resumo:
A prática do ioga tem se tornado cada vez mais popular, não apenas pelos benefícios físicos, mas principalmente pelo bem-estar psicológico trazido pela sua prática. Um dos componentes do ioga é o Prãnãyama, ou controle da respiração. A atenção e a respiração são dois mecanismos fisiológicos e involuntários requeridos para a execução do Prãnãyama. O principal objetivo desse estudo foi verificar se variáveis contínuas do EEG (potência de diferentes faixas que o compõem) seriam moduladas pelo controle respiratório, comparando-se separadamente as duas fases do ciclo respiratório (inspiração e expiração), na situação de respiração espontânea e controlada. Fizeram parte do estudo 19 sujeitos (7 homens/12 mulheres, idade média de 36,89 e DP = ± 14,46) que foram convidados a participar da pesquisa nas dependências da Faculdade de Saúde da Universidade Metodista de São Paulo. Para o registro do eletroencefalograma foi utilizado um sistema de posicionamento de cinco eletrodos Ag AgCl (FPz, Fz, Cz, Pz e Oz) fixados a uma touca de posicionamento rápido (Quick-Cap, Neuromedical Supplies®), em sistema 10-20. Foram obtidos valores de máxima amplitude de potência (espectro de potência no domínio da frequência) nas frequências teta, alfa e beta e delta e calculada a razão teta/beta nas diferentes fases do ciclo respiratório (inspiração e expiração), separadamente, nas condições de respiração espontânea e de controle respiratório. Para o registro do ciclo respiratório, foi utilizada uma cinta de esforço respiratório M01 (Pletismógrafo). Os resultados mostram diferenças significativas entre as condições de respiração espontânea e de controle com valores das médias da razão teta/beta menores na respiração controlada do que na respiração espontânea e valores de média da potência alfa sempre maiores no controle respiratório. Diferenças significativas foram encontradas na comparação entre inspiração e expiração da respiração controlada com diminuição dos valores das médias da razão teta/beta na inspiração e aumento nos valores das médias da potência alfa, sobretudo na expiração. Os achados deste estudo trazem evidências de que o controle respiratório modula variáveis eletrofisiológicas relativas à atenção refletindo um estado de alerta, porém mais relaxado do que na situação de respiração espontânea.
Resumo:
The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia.
Resumo:
Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme α-galactosidase A (α-gal A; EC 3.2.1.22). We previously have demonstrated long-term α-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic α-gal A gene and the human IL-2Rα chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted α-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34+ peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased α-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.
Resumo:
Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.
Resumo:
Over the past decade, mindfulness practices have been used with increasing frequency as therapeutic components within cognitive behavioral treatment regimens. As is standard practice, prescriptive uses of mindfulness intervention are incorporated to improve end-state functioning by ameliorating problematic symptoms and conditions. Common change-targets include the control of cognitive and emotional content for purposes of enhancing psychological self-regulation and physical well-being. The term mindfulness applies to a heterogeneous range of practices, methods, and techniques. While there is no singular agreed upon definition for mindfulness, as a process concept, the term connotes an immediate, non-thetic access to events, wherein each occasioning event is experienced in toto within the broader contextual event-field, and distinct from intervening conceptual themes being noticed. Training in mindfulness practices may be conducted using individual, group, or small class formats. The current paper provides a meta-analytic review of 44 treatment outcome studies (extracted 1982 through 2006), which examines the clinical utility of mindfulness as the primary therapeutic approach. Results indicated that average effect sizes for mindfulness based interventions fell within the medium range for construct category variables examined (d = .56). These findings suggest that mindfulness training is a cost-effective treatment for a wide array of contemporary psychological problems and diagnoses, in addition to fostering positive psychology attributes such as quality and satisfaction with life. A critique of the research and recommendations for future research, including a need to examine the role of mindfulness as a tool for cultivating increased psychological acceptance and life satisfaction, is presented.
Resumo:
Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Morphine-6beta-D-glucuronide (M6G) is an analgesically active metabolite of morphine, accounting for approximate to10% of the morphine dose when administered by systemic routes to humans. Although M6G is more hydrophilic than morphine, it crosses the blood-brain barrier, albeit relatively slowly. For this reason, it is generally thought that, after chronic dosing, M6G contributes significantly to the analgesic effects of systemically administered morphine. Owing to its polar nature, M6G is cleared from the systemic circulation primarily via renal elimination. As M6G accumulates in patients with renal impairment, there is an increased risk of M6G-induced respiratory depression in renal failure patients who are being dosed chronically with systemic morphine. Consistent with its analgesic and respiratory depressant properties, M6G binds to the p-opioid receptor in a naloxone-reversible manner. Although the affinity of M6G for the mu-opioid receptor is similar to or slightly less than that of morphine, preclinical studies in rodents show that M6G is one to two orders of magnitude more potent than morphine when administered by central routes. This major discrepancy between the markedly higher intrinsic antinociceptive potency of M6G relative to morphine, despite their similar p-opioid receptor binding affinities, is difficult to reconcile. It has been proposed that M6G mediates its pain-relieving effects through a novel 'M6G opioid receptor', while others have argued that M6G may have higher efficacy than morphine for transduction of intracellular events. When administered by parenteral routes to rodents, M6G's antinociceptive potency is no more than twofold higher than morphine. In humans, the analgesic efficacy and respiratory depressant potency of M6G relative to morphine have been assessed in a number of short-term studies involving the intrathecal or intravenous routes of administration. For example, in hip replacement patients, intrathecal M6G provided excellent postoperative analgesia but the occurrence of late respiratory depression in 10% of these patients raised serious concern about safety. In postoperative patients, intravenous M6G administered by means of patient-controlled analgesia (PCA), or bolus plus PCA, produced no analgesia in one study and limited analgesia in another. Similarly, there was a lack of significant analgesia in healthy volunteers who received intravenous M6G for the alleviation of experimental pain (carbon dioxide applied to the nasal mucosa). In contrast, satisfactory analgesia was produced by bolus doses of intravenous M6G administered to patients with cancer pain, and to healthy volunteers with experimentally-induced ischaemic, electrical or thermal (ice water) pain. Studies to date in healthy volunteers suggest that intravenous M6G may be a less potent respiratory depressant and have a lower propensity for producing nausea and vomiting than morphine. However, it is unclear whether equi-analgesic doses of M6G and morphine were compared. Clearly, more extensive short-term trials, together with studies involving chronic M6G administration, are necessary before the potential clinical utility of M6G as an analgesic drug in its own right can be determined.
Resumo:
Purpose: Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. Experimental Design: RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. Results: We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARa, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and Pan IN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early Pan IN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. Conclusions: We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.