939 resultados para CELL PENETRATING PEPTIDES
Resumo:
Amphibian defensive skin secretions are known to contain a plethora of biologically-active peptides that are often structural and functional analogues of vertebrate neuropeptides. Here we report the structures of two invertebrate neuropeptide analogues, IPPQFMRF amide (IF-8 amide) and EGDEDEFLRF amide (EF-10 amide), from the defensive skin secretions of two different species of African hyperoliid frogs, Kassina maculata and Phylictimantis verrucosus, respectively. These represent the first canonical FMRF amide-related peptides (FaRPs) from a vertebrate source. The cDNA encoding IF-8 amide was cloned from a skin secretion library and found to contain a single copy of the peptide located at the C-terminus of a 58 amino acid residue open-reading frame. These data extend the potential targets of the defensive arsenal of amphibian tegumental secretions to parasitic/predatory invertebrates and the novel peptides described may represent the first vertebrate peptidic endectocides.
Resumo:
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Resumo:
Peptidomics is a powerful set of tools for the identification, structural elucidation and discovery of novel regulatory peptides and for monitoring the degradation pathways of structurally and catalytically important proteins. Amphibian skin secretions, arising from specialized granular glands, often contain complex peptidomes containing many components of entirely novel structure and unique site-substituted analogues of known peptide families. Following the discovery that the granular gland transcriptome is present in such secretions in a PCR-amenable form, we designed a strategy for peptide structural characterization involving the integration of ‘shotgun’ cloning of cDNAs encoding peptide precursors, deduction of putative bioactive peptide structures, and confirmation of these structures using tandem MS/MS sequencing. Here, we illustrate this strategy by means of elucidation of the primary structures of nigrocin-2 homologues from the defensive skin secretions of four species of Chinese Odorrana frogs, O. schmackeri, O. livida, O. hejiangensis and O. versabilis. Synthetic replicates of the peptides were found to possess antimicrobial activity. Nigrocin-2 peptides occur widely in the skin secretions of Asian ranid frogs and in those of the Odorrana group, and are particularly well-represented and of diverse structure in some species. Integration of the molecular analytical technologies described provides a means for rapid structural characterization of novel peptides from complex natural libraries in the absence of systematic online database information.
Resumo:
Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.
Resumo:
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.
Resumo:
Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha 2 beta 1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where 0 is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.
Resumo:
FMRFamide-related peptides (FaRPs) are the largest known family of invertebrate neuropeptides. Immunocytochemical screens of nematode tissues using antisera raised to these peptides have localized extensive FaRP-immunostaining to their nervous systems. Although 21 FaRPs have been isolated and sequenced from extracts of free-living and parasitic nematodes, available evidence indicates that other FaRPs await discovery. While our knowledge of the pharmacology of these native nematode neuropeptides is extremely limited, reports on their physiological activity in nematodes are ever increasing. All the nematode FaRPs examined so far have been found to have potent and varied actions on nematode neuromuscular activity. It is only through the extensive pharmacological and physiological assessment of the tissue, cell and receptor interactions of these peptidic messengers that an understanding of their activity on nematode neuromusculature will be possible. In this review, Aaron Maule and colleagues examine the current understanding of the pharmacology of nematode FaRPs.
Resumo:
Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.
Resumo:
The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu?Pro at position 2 and Phe?Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20µM and 150µM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His?Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5µM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His?Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40µm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.
Resumo:
The IQ-motif is an amphipathic, often positively charged, a-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic a-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.
Resumo:
Most bacterial pathogens are resistant to cationic antimicrobial peptides (CAMPs) that are key components of the innate immunity of both vertebrates and invertebrates. In Gram-negative bacteria, the known CAMPs resistance mechanisms involve outer membrane (OM) modifications and specifically those in the lipopolysaccharide (LPS) molecule. Here we report, the characterization of a novel CAMPs resistance mechanism present in Yersinia that is dependent on an efflux pump/potassium antiporter system formed by the RosA and RosB proteins. The RosA/RosB system is activated by a temperature shift to 37 degrees C, but is also induced by the presence of the CAMPs, such as polymyxin B. This is the first report of a CAMPs resistance system that is induced by the presence of CAMPs. It is proposed that the RosA/RosB system protects the bacteria by both acidifying the cytoplasm to prevent the CAMPs action and pumping the CAMPs out of the cell.
Resumo:
The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.
Resumo:
Aim - To describe a surgical technique for autologous limbal stem cell transplantation and the outcome of a series of patients with unilateral stem cell deficiency. Methods - A report of six consecutive patients who underwent autologous limbal stem cell transplantation is presented. The primary diagnosis included alkali burn (n = 3), conjunctival intraepithelial neoplasia (CIN) (n = 1), recurrent pterygium (n = 1), and contact lens induced keratopathy (n = 1). The autologous transplanted tissue consisted of peripheral cornea, limbus, and conjunctiva obtained from the contralateral eye. Three of the above patients underwent penetrating keratoplasty in association with autolimbal transplantation. A significant modification to established techniques was the close monitoring of conjunctival epithelial migration in the immediate postoperative period. If conjunctival epithelium threatened to migrate on to the corneal surface, it was mechanically removed at the slit lamp and prevented from crossing the limbus. This was required in three patients. Results - The mean follow up was 18.8 months. The outcome was satisfactory in all cases: a stable corneal surface was restored and there was a substantial improvement in vision and symptoms. One patient had a primary failure of the corneal allograft associated with glaucoma, and 6 months later developed a retinal detachment. No complications were noted in the donor eye with the exception of one patient who developed filamentary keratitis along the edge of the donor site. Conclusion - Autologous limbal transplantation with corneal, limbal, and conjunctival carriers was found to be useful for ocular surface reconstruction, over a mid-term follow up, in patients with unilateral stem cell deficiency. Close monitoring of the migration of conjunctival epithelium in the immediate postoperative period, and preventing it from crossing the limbus, ensured that the corneal surface was re-epithelialised exclusively from epithelial cells derived from the transplanted limbal tissue. This approach should improve the success of this procedure.
Resumo:
PURPOSE: To evaluate the relative benefits and to identify any adverse effects of surgical interventions for limbal stem cell deficiency (LSCD).
DESIGN: Systematic literature review.
METHODS: We searched the following electronic databases from January 1, 1989 through September 30, 2006: MEDLINE, EMBASE, Science citation index, BIOSIS, and the Cochrane Library. In addition, reference lists were scanned to identify any additional reports. The quality of published reports was assessed using standard methods. The main outcome measure was improvement in vision of at least two Snellen lines of best-corrected visual acuity (BCVA). Data on adverse outcomes also were collected.
RESULTS: Twenty-six studies met the inclusion criteria. There were no randomized controlled studies. All 26 studies were either prospective or retrospective case series. For bilateral severe LSCD, keratolimbal allograft was the most common intervention with systemic immunosuppression. Other interventions included eccentric penetrating keratolimbal allografts and cultivated autologous oral mucosal epithelial grafts. An improvement in BCVA of two lines or more was reported in 31% to 67% of eyes. For unilateral severe LSCD, the most common surgical intervention was contralateral conjunctival limbal autograft, with 35% to 88% of eyes gaining an improvement in BCVA of two lines or more. The only study evaluating partial LSCD showed an improvement in BCVA of two lines or more in 39% of eyes.
CONCLUSIONS: Studies to date have not provided strong evidence to guide clinical practice on which surgery is most beneficial to treat various types of LSCD. Standardized data collection in a multicenter LSCD register is suggested.