945 resultados para Air Pollution Reduction, Cardiorespitory Diseases, Energy Use Scenario, Health Benefit Analysis
Resumo:
Background: Urban air pollutants are associated with cardiovascular events. Traffic controllers are at high risk for pollution exposure during outdoor work shifts. Objective: The purpose of this study was to evaluate the relationship between air pollution and systemic blood pressure in traffic controllers during their work shifts. Methods: This cross-sectional study enrolled 19 male traffic controllers from Santo Andre city (Sao Paulo, Brazil) who were 30-60 years old and exposed to ambient air during outdoor work shifts. Systolic and diastolic blood pressure readings were measured every 15 min by an Ambulatory Arterial Blood Pressure Monitoring device. Hourly measurements (lags of 0-5 h) and the moving averages (2-5 h) of particulate matter (PM(10)), ozone (O(3)) ambient concentrations and the acquired daily minimum temperature and humidity means from the Sao Paulo State Environmental Agency were correlated with both systolic and diastolic blood pressures. Statistical methods included descriptive analysis and linear mixed effect models adjusted for temperature, humidity, work periods and time of day. Results: Interquartile increases of PM(10) (33 mu g/m(3)) and O(3) (49 mu g/m(3)) levels were associated with increases in all arterial pressure parameters, ranging from 1.06 to 2.53 mmHg. PM(10) concentration was associated with early effects (lag 0), mainly on systolic blood pressure. However, O(3) was weakly associated most consistently with diastolic blood pressure and with late cumulative effects. Conclusions: Santo Andre traffic controllers presented higher blood pressure readings while working their outdoor shifts during periods of exposure to ambient pollutant fluctuations. However, PM(10) and O(3) induced cardiovascular effects demonstrated different time courses and end-point behaviors and probably acted through different mechanisms. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present study aimed to verify the time course of the effects of environmental levels of urban air pollution toxicity on lung arterioles. BALB/c mice (n = 56) were continuously exposed to selective chambers equipped with (filtered, F) or without (non-filtered, NF) filter devices for particles and toxic gases for 24 h/day, over 14, 21, 30 or 45 days. After exposure, we evaluated the lumen-wall relationship (an estimator of arteriolar narrowing), endothelial nitric oxide synthase (eNOS) and endothelin type A receptor (ETAr) expression in the vascular wall and inflammatory influx of the peribronchiolar area. Concentrations of fine particulate matter (PM <= 2.5 mu g/m(3)), nitrogen dioxide (NO(2)), black smoke (BS), humidity and temperature in both the environment and inside the chambers were measured daily. Filters cleared 100% of BS and 97% of PM inside the F chamber. The arteriole wall of the lungs of mice from NF chamber had an increased ETAr expression (p <= 0.042) concomitant to a decrease in the lumen/wall ratio (p = 0.02) on the early days of exposure, compared to controls. They also presented a progressive increment of inflammatory influx in the peribronchiolar area during the study (p = 0.04) and decrement of the eNOS expression on the 45th day of exposure in both vascular layers (p <= 0.03). We found that after 14 days of exposure, the ambient levels of air pollutants in Sao Paulo induced vasoconstriction that was associated with an increase in ETAr expression. These vascular results do not appear to be coupled to the progressive inflammatory influx in lung tissue, suggesting a down-regulation of vasoconstrictive mechanisms through an imbalance in the cytokines network. It is likely that these responses are protective measures that decrease tissue damage brought about by continuous exposure to air pollutants. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We analyzed the impact of chronic exposure to urban air pollution on the development of atherosclerosis. Hyperlipemic mice (LDLR(-/-)) were submitted to a high fat diet and air pollution for four months. We measured the susceptibility of LDL to oxidative modifications (TBARS), the presence of anti-oxLDL and an apoB-derived peptide (apoB-D) in blood and the degree of atherosclerosis in the aortic arch. Air pollution increased the susceptibility of LDL to oxidation as well as anti-oxLDL and anti-apo-B levels. These levels were even higher than in mice submitted to a high fat diet and non-polluted air. The lipid content of the atherosclerotic plaques in the aorta was increased in groups with a high cholesterol diet independently of the air quality. However, the thickness of the arterial wall was greater in mice fed a high lipid diet with polluted air. Thus, we conclude that urban air pollution exacerbates the susceptibility of LDL to oxidation, atherogenesis and vascular remodeling in hyperlipemic mice and that an immune response accompanies this process. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: People with less education in Europe, Asia, and the United States are at higher risk of mortality associated with daily and longer-term air pollution exposure. We examined whether educational level modified associations between mortality and ambient particulate pollution (PM(10)) in Latin America, using several timescales. Methods: The study population included people who died during 1998-2002 in Mexico City, Mexico; Santiago, Chile; and Sao Paulo, Brazil. We fit city-specific robust Poisson regressions to daily deaths for nonexternal-cause mortality, and then stratified by age, sex, and educational attainment among adults older than age 21 years (none, some primary, some secondary, and high school degree or more). Predictor variables included a natural spline for temporal trend, linear PM(10) and apparent temperature at matching lags, and day-of-week indicators. We evaluated PM(10) for lags 0 and I day, and fit an unconstrained distributed lag model for cumulative 6-day effects. Results: The effects of a 10-mu g/m(3) increment in lag 1 PM(10) on all nonextemal-cause adult mortality were for Mexico City 0.39% (95% confidence interval = 0.131/-0.65%); Sao Paulo 1.04% (0.71%-1.38%); and for Santiago 0.61% (0.40%-0.83%. We found cumulative 6-day effects for adult mortality in Santiago (0.86% [0.48%-1.23%]) and Sao Paulo (1.38% [0.85%-1.91%]), but no consistent gradients by educational status. Conclusions: PM(10) had important short- and intermediate-term effects on mortality in these Latin American cities, but associations did not differ consistently by educational level.
Resumo:
The present study was designed to explore the correlation between the frequency of micronuclei in Trad-MN, measured across 28 biomonitoring stations during the period comprised between 11 of May and 2 of October, 2006, and adjusted mortality rates due to cardiovascular, respiratory diseases and cancer in Sao Jose dos Campos, Brazil, an area with different sources of air pollution. For controlling purposes, mortality rate due to gastrointestinal diseases (an event less prone to be affected by air pollution) was also considered in the analysis. Spatial distribution of micronuclei frequency was determined using average interpolation. The association between health estimators and micronuclei frequency was determined by measures of Pearson`s correlation. Higher frequencies of micronuclei were detected in areas with high traffic and close to a petrochemical pole. Significant associations were detected between micronuclei frequency and adjusted mortality rate due to cardiovascular diseases (r = 0.841, p = 0.036) and cancer (r = 0.890, p = 0.018). The association between mortality due to chronic obstructive pulmonary diseases was positive but did not reach statistical significance (r = 0.640, p = 0.172), probably because of the small number of events. Gastrointestinal mortality did not exhibit significant association with micronuclei frequency. Because the small number of observations and the nature of an ecological study, the present findings must be considered with caution and considered as preliminary. Further studies, performed in different conditions of contamination and climate should be done before considering Trad-MN in the evaluation of human health risk imposed by air pollutants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
in humans, adverse pregnancy outcomes (low birth weight, prematurity, and intrauterine growth retardation) are associated with exposure to urban air pollution. Experimental data have also shown that such exposure elicits adverse reproductive outcomes. We hypothesized that the effects of urban air pollution on pregnancy outcomes could be related to changes in functional morphology of the placenta. To test this, future dams were exposed during pregestational and gestational periods to filtered or nonfiltered air in exposure chambers. Placentas were collected from near-term pregnancies and prepared for microscopical examination. Fields of view on vertical uniform random tissue slices were analyzed using stereological methods. Volumes of placental compartments were estimated, and the labyrinth was analyzed further in terms of its maternal vascular spaces, fetal capillaries, trophoblast, and exchange surface areas. From these primary data, secondary quantities were derived: vessel calibers (expressed as diameters), trophoblast thickness (arithmetic mean), and total and mass-specific morphometric diffusive conductances for oxygen of the intervascular barrier. Two-way analysis of variance showed that both periods of exposure led to significantly smaller fetal weights. Pregestational exposure to nonfiltered air led to significant increases in fetal capillary surface area and in total and mass-specific conductances. However, the calibers of maternal blood spaces were reduced. Gestational exposure to nonfiltered air was associated with reduced volumes, calibers, and surface areas of maternal blood spaces and with greater fetal capillary surfaces and diffusive conductances. The findings indicate that urban air pollution affects placental functional morphology. Fetal weights are compromised despite attempts to improve diffusive transport across the placenta.
Resumo:
In this study, we tested the influence of ambient air pollution on different phases of development of adult mice. With respect to adult weight, the animals that had spent their in utero period exposed to pollution showed less weight gain over their lifetime, as well as lower activity levels of the antioxidant enzymes catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our study suggests that contact with atmospheric pollutants during the foetal period produces important changes on enzymatic erythrocyte antioxidant defense and weight in adult mice. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q(1): a parts per thousand currency sign30.48 A mu g/m(3), Q(2): 30.49-42.00 A mu g/m(3), Q(3): 42.01-56.72 A mu g/m(3), and Q(4): > 56.72 A mu g/m(3)). Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q(4) period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04-25.51) when compared to women exposed to Q(1-3) periods. Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed.
Resumo:
Objectives: The purpose of this study was to explore the clinical relevance of chronic exposure to ambient levels of traffic derived air pollution on the ocular surface. Methods: A panel study involving 55 volunteers was carried out in Sao Paulo, Brazil. We measured the mean individual levels of nitrogen dioxide (NO(2)) exposure for 7 days. All subjects answered the Ocular Symptom Disease Index (OSDI) and a symptoms inventory. Subsequently, subjects underwent Schirmer I test, biomicroscopy, vital staining and tear breakup time (TOUT) assessment. Subject`s mean daily exposure to NO(2) was categorized in quartiles. Statistical analysis was performed using one-way ANOVA, Tukey HSD and Chi-Square tests. Results: A dose-response pattern was detected between OSDI scores and NO(2) quartiles (p < 0.05). There was a significant association between NO(2) quartiles and reported ocular irritation (X(2) = 9.2, p < 0.05) and a significant negative association between TBUT and NO(2) exposure (p < 0.05, R = -0.316. Spearman`s correlation). There was a significant increase in the frequency of meibomitis in subjects exposed to higher levels of NO(2) (p < 0.05). Conclusions: Subjects exposed to higher levels of traffic derived air pollution reported more ocular discomfort symptoms and presented greater tear film instability, suggesting that the ocular discomfort symptoms and tear breakup time could be used as convenient bioindicators of the adverse health effects of traffic derived air pollution exposure. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, Sao Paulo city) during the gestational period and/or for 3 mo after birth, according to 4 protocols: control group-prenatal and postnatal life in CC; prenatal group-prenatal in PC and postnatal life in CC; postnatal group-prenatal in CC and postnatal life in PC; and pre-post group-prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45 +/- 0.84 nmol/mg) and pre-post groups (3.84 +/- 1.39 nmol/mg) compared to the control group (0.31 +/- 0.10 nmol/mg) (p < .01). MDA values in the pre-post group were significantly increased compared to the prenatal group (0.71 +/- 0.15 nmol/mg) (p = .017). Myocardial isoprostane area fraction in the pre-post group was increased compared to other groups (p <= .01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.
Resumo:
Millions of people worldwide are affected by anthropogenic air pollution derived from the combustion of fossil fuels. In this work, we tested the effects of fetal, lactation and post-weaning ambient air pollution exposure on total homocysteine (tHcy) concentrations and on a downstream pathway element, the plasma cysteine (Cys) concentration. Two similar exposure chambers (polluted and filtered chamber) were located near an area with heavy traffic in Sao Paulo, Brazil, and male Swiss mice were housed there from the pre-natal period until 3 months of age. Groups during fetal, lactation and adult periods of exposure were apportioned, and tHcy and Cys plasma concentrations were assessed when the animals were 3 months old. In our study, both the tHcy and Cys concentrations were decreased in groups that spent their final stage of life in polluted chambers, suggesting recent alterations in tHcy and Cys concentrations due to air pollution exposure. The possible relationship of these data with cardiovascular dysfunction is still a matter of controversy in animals; nevertheless, epigenetic mechanisms emerge as a possible issue to consider in the investigation of the link between air pollution and Hcy measurement. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this study, the results of chemical concentrations inside and outside of a Lisbon (Portugal) traffic tunnel were compared, during one week. They were obtained by Instrumental Neutron Activation Analysis (INAA). The tunnel values largely exceed the Air Ambient legislated values and the Pearson Correlations Coefficients point out to soil re-suspension/dispersed road dust (As, Ce, Eu, Hf, Fe, Mo, Sc, Zn), traffic-markers (Ba, Cr), tire wear (Cr, Zn), break wear (Fe, Zn, Ba, Cu, Sb), exhaust and motor oil (Zn) and sea-spray (Br, Na). On all days these elements inside the tunnel were more enriched than outside; significant statistical differences were found for Co (p=0.005), Br (p=0.008), Zn (p=0.01) and Sb (p=0.005), while enrichment factors of As and Sc are statistically identical. The highest values were found for As, Br, Zn and Sb, for both inside and outside the tunnel.
Resumo:
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ngm−3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10−6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98×10−7 in PM10 and 1.06×10−6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.