957 resultados para trimmed likelihood estimation
Resumo:
This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we discuss inferential aspects for the Grubbs model when the unknown quantity x (latent response) follows a skew-normal distribution, extending early results given in Arellano-Valle et al. (J Multivar Anal 96:265-281, 2005b). Maximum likelihood parameter estimates are computed via the EM-algorithm. Wald and likelihood ratio type statistics are used for hypothesis testing and we explain the apparent failure of the Wald statistics in detecting skewness via the profile likelihood function. The results and methods developed in this paper are illustrated with a numerical example.
Resumo:
This paper considers the issue of modeling fractional data observed on [0,1), (0,1] or [0,1]. Mixed continuous-discrete distributions are proposed. The beta distribution is used to describe the continuous component of the model since its density can have quite different shapes depending on the values of the two parameters that index the distribution. Properties of the proposed distributions are examined. Also, estimation based on maximum likelihood and conditional moments is discussed. Finally, practical applications that employ real data are presented.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
We consider the issue of performing residual and local influence analyses in beta regression models with varying dispersion, which are useful for modelling random variables that assume values in the standard unit interval. In such models, both the mean and the dispersion depend upon independent variables. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. An application using real data is presented and discussed.
Resumo:
In this article, we present the EM-algorithm for performing maximum likelihood estimation of an asymmetric linear calibration model with the assumption of skew-normally distributed error. A simulation study is conducted for evaluating the performance of the calibration estimator with interpolation and extrapolation situations. As one application in a real data set, we fitted the model studied in a dimensional measurement method used for calculating the testicular volume through a caliper and its calibration by using ultrasonography as the standard method. By applying this methodology, we do not need to transform the variables to have symmetrical errors. Another interesting aspect of the approach is that the developed transformation to make the information matrix nonsingular, when the skewness parameter is near zero, leaves the parameter of interest unchanged. Model fitting is implemented and the best choice between the usual calibration model and the model proposed in this article was evaluated by developing the Akaike information criterion, Schwarz`s Bayesian information criterion and Hannan-Quinn criterion.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this work is to study the behaviour of Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-32] adjusted likelihood ratio statistic in testing simple hypothesis in a new class of regression models proposed here. The proposed class of regression models considers Dirichlet distributed observations, and the parameters that index the Dirichlet distributions are related to covariates and unknown regression coefficients. This class is useful for modelling data consisting of multivariate positive observations summing to one and generalizes the beta regression model described in Vasconcellos and Cribari-Neto [Vasconcellos, K.L.P., Cribari-Neto, F., 2005. Improved maximum likelihood estimation in a new class of beta regression models. Brazilian journal of Probability and Statistics 19,13-31]. We show that, for our model, Skovgaard`s adjusted likelihood ratio statistics have a simple compact form that can be easily implemented in standard statistical software. The adjusted statistic is approximately chi-squared distributed with a high degree of accuracy. Some numerical simulations show that the modified test is more reliable in finite samples than the usual likelihood ratio procedure. An empirical application is also presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We introduce, for the first time, a new class of Birnbaum-Saunders nonlinear regression models potentially useful in lifetime data analysis. The class generalizes the regression model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33, 51-60]. We discuss maximum-likelihood estimation for the parameters of the model, and derive closed-form expressions for the second-order biases of these estimates. Our formulae are easily computed as ordinary linear regressions and are then used to define bias corrected maximum-likelihood estimates. Some simulation results show that the bias correction scheme yields nearly unbiased estimates without increasing the mean squared errors. Two empirical applications are analysed and discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.