Bivariate gamma-geometric law and its induced Levy process
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
14/10/2013
14/10/2013
2012
|
Resumo |
In this article we introduce a three-parameter extension of the bivariate exponential-geometric (BEG) law (Kozubowski and Panorska, 2005) [4]. We refer to this new distribution as the bivariate gamma-geometric (BGG) law. A bivariate random vector (X, N) follows the BGG law if N has geometric distribution and X may be represented (in law) as a sum of N independent and identically distributed gamma variables, where these variables are independent of N. Statistical properties such as moment generation and characteristic functions, moments and a variance-covariance matrix are provided. The marginal and conditional laws are also studied. We show that BBG distribution is infinitely divisible, just as the BEG model is. Further, we provide alternative representations for the BGG distribution and show that it enjoys a geometric stability property. Maximum likelihood estimation and inference are discussed and a reparametrization is proposed in order to obtain orthogonality of the parameters. We present an application to a real data set where our model provides a better fit than the BEG model. Our bivariate distribution induces a bivariate Levy process with correlated gamma and negative binomial processes, which extends the bivariate Levy motion proposed by Kozubowski et al. (2008) [6]. The marginals of our Levy motion are a mixture of gamma and negative binomial processes and we named it BMixGNB motion. Basic properties such as stochastic self-similarity and the covariance matrix of the process are presented. The bivariate distribution at fixed time of our BMixGNB process is also studied and some results are derived, including a discussion about maximum likelihood estimation and inference. (C) 2012 Elsevier Inc. All rights reserved. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq-Brazil) Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil |
Identificador |
JOURNAL OF MULTIVARIATE ANALYSIS, SAN DIEGO, v. 109, n. 7, supl. 4, Part 1, pp. 130-145, AUG, 2012 0047-259X http://www.producao.usp.br/handle/BDPI/34524 10.1016/j.jmva.2012.03.004 |
Idioma(s) |
eng |
Publicador |
ELSEVIER INC SAN DIEGO |
Relação |
JOURNAL OF MULTIVARIATE ANALYSIS |
Direitos |
restrictedAccess Copyright ELSEVIER INC |
Palavras-Chave | #BIVARIATE GAMMA-GEOMETRIC LAW #CHARACTERISTIC FUNCTION #INFINITELY DIVISIBLE DISTRIBUTION #MAXIMUM LIKELIHOOD ESTIMATION #ORTHOGONAL PARAMETERS #LEVY PROCESS #DISTRIBUTIONS #PARAMETER #MARGINALS #STATISTICS & PROBABILITY |
Tipo |
article original article publishedVersion |