716 resultados para trees (mathematics)
Resumo:
This paper reports a 2-year longitudinal study on the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on students’ mathematical development. The study involved 316 Kindergarten students in 17 classes from four schools in Sydney and Brisbane. The development of the PASA assessment interview and scale are presented. The intervention program provided explicit instruction in mathematical pattern and structure that enhanced the development of students’ spatial structuring, multiplicative reasoning, and emergent generalisations. This paper presents the initial findings of the impact of the PASMAP and illustrates students’ structural development.
Resumo:
The Pattern and Structure Mathematical Awareness Program(PASMAP) stems from a 2-year longitudinal study on students’ early mathematical development. The paper outlines the interview assessment the Pattern and Structure Assessment(PASA) designed to describe students’ awareness of mathematical pattern and structure across a range of concepts. An overview of students’ performance across items and descriptions of their structural development are described.
Resumo:
There is unprecedented worldwide demand for mathematical solutions to complex problems. That demand has generated a further call to update mathematics education in a way that develops students’ abilities to deal with complex systems.
Resumo:
ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals. This uniquely interactive program allows students to participate in exciting learning activites whilst still allowing the teacher to maintain control of learning outcomes. It is the first program in Australia to give teachers activities to differentiate instruction within each lesson and across school years. Written by a team of Australia's leading mathematics educators, this program integrates key research findings in a practical sequence of modules and lessons providing schools with a step-by-step approach to the new curriculum. Click links on the right to explore the program.
Resumo:
A novel m-ary tree based approach is presented to solve asset management decisions which are combinatorial in nature. The approach introduces a new dynamic constraint based control mechanism which is capable of excluding infeasible solutions from the solution space. The approach also provides a solution to the challenges with ordering of assets decisions.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
The ability to decode graphics is an increasingly important component of mathematics assessment and curricula. This study examined 50, 9- to 10-year-old students (23 male, 27 female), as they solved items from six distinct graphical languages (e.g., maps) that are commonly used to convey mathematical information. The results of the study revealed: 1) factors which contribute to success or hinder performance on tasks with various graphical representations; and 2) how the literacy and graphical demands of tasks influence the mathematical sense making of students. The outcomes of this study highlight the changing nature of assessment in school mathematics and identify the function and influence of graphics in the design of assessment tasks.
Resumo:
The purpose of this article is to describe a project with one Torres Strait Islander Community. It provides some insights into parents’ funds of knowledge that are mathematical in nature, such as sorting shells and giving fish. The idea of funds of knowledge is based on the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being. This knowledge is then practised throughout their lives and passed onto the next generation of children. Through adopting a community research approach, funds of knowledge that can be used to validate the community’s identities as knowledgeable people, can also be used as foundations for future learnings for teachers, parents and children in the early years of school. They can be the bridge that joins a community’s funds of knowledge with schools validating that knowledge.
Resumo:
Carbon dioxide (CO2), as a primary product of combustion, is a known factor affecting climate change and global warming. In Australia, CO2 emissions from biomass burning are a significant contributor to total carbon in the atmosphere and therefore, it is important to quantify the CO2 emission factors from biomass burning in order to estimate their magnitude and impact on the Australian atmosphere. This paper presents the quantification of CO2 emission factors for five common tree species found in South East Queensland forests, as well as several grasses taken from savannah lands in the Northern Territory of Australia, under controlled ‘fast burning’ and ‘slow burning’ laboratory conditions. The results showed that CO2 emission factors varied according to the type of vegetation and burning conditions, with emission factors for fast burning being 2574 ± 254 g/kg for wood, 394 ± 40 g/kg for branches and leaves, and 2181 ± 120 g/kg for grass. Under slow burning conditions, the CO2 emission factors were 218 ± 20 g/kg for wood, 392± 80 g/kg for branches and leaves, and 2027 ± 809 g/kg for grass.
Resumo:
The use of symbols and abbreviations adds uniqueness and complexity to the mathematical language register. In this article, the reader’s attention is drawn to the multitude of symbols and abbreviations which are used in mathematics. The conventions which underpin the use of the symbols and abbreviations and the linguistic difficulties which learners of mathematics may encounter due to the inclusion of the symbolic language are discussed. 2010 NAPLAN numeracy tests are used to illustrate examples of the complexities of the symbolic language of mathematics.