968 resultados para text vector space model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 90C29, 90C48

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the adoption of innovations by individuals has been criticized for focusing on various factors that lead to the adoption or rejection of an innovation while ignoring important aspects of the dynamic process that takes place. Theoretical process-based models hypothesize that individuals go through consecutive stages of information gathering and decision making but do not clearly explain the mechanisms that cause an individual to leave one stage and enter the next one. Research on the dynamics of the adoption process have lacked a structurally formal and quantitative description of the process. ^ This dissertation addresses the adoption process of technological innovations from a Systems Theory perspective and assumes that individuals roam through different, not necessarily consecutive, states, determined by the levels of quantifiable state variables. It is proposed that different levels of these state variables determine the state in which potential adopters are. Various events that alter the levels of these variables can cause individuals to migrate into different states. ^ It was believed that Systems Theory could provide the required infrastructure to model the innovation adoption process, particularly applied to information technologies, in a formal, structured fashion. This dissertation assumed that an individual progressing through an adoption process could be considered a system, where the occurrence of different events affect the system's overall behavior and ultimately the adoption outcome. The research effort aimed at identifying the various states of such system and the significant events that could lead the system from one state to another. By mapping these attributes onto an “innovation adoption state space” the adoption process could be fully modeled and used to assess the status, history, and possible outcomes of a specific adoption process. ^ A group of Executive MBA students were observed as they adopted Internet-based technological innovations. The data collected were used to identify clusters in the values of the state variables and consequently define significant system states. Additionally, events were identified across the student sample that systematically moved the system from one state to another. The compilation of identified states and change-related events enabled the definition of an innovation adoption state-space model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd and Marine Scotland for fieldwork and equipment support. Handling and tagging of fulmars was conducted under licences from the British Trust for Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine studentship and LQ was supported by a NERC Studentship. Thanks also to the many colleagues who assisted with fieldwork during the project, and to Helen Bailey and Arliss Winship for advice on implementing the state-space model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We thank Orkney Islands Council for access to Eynhallow and Talisman Energy (UK) Ltd and Marine Scotland for fieldwork and equipment support. Handling and tagging of fulmars was conducted under licences from the British Trust for Ornithology and the UK Home Office. EE was funded by a Marine Alliance for Science and Technology for Scotland/University of Aberdeen College of Life Sciences and Medicine studentship and LQ was supported by a NERC Studentship. Thanks also to the many colleagues who assisted with fieldwork during the project, and to Helen Bailey and Arliss Winship for advice on implementing the state-space model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of social diffusion has animated sociological thinking on topics ranging from the spread of an idea, an innovation or a disease, to the foundations of collective behavior and political polarization. While network diffusion has been a productive metaphor, the reality of diffusion processes is often muddier. Ideas and innovations diffuse differently from diseases, but, with a few exceptions, the diffusion of ideas and innovations has been modeled under the same assumptions as the diffusion of disease. In this dissertation, I develop two new diffusion models for "socially meaningful" contagions that address two of the most significant problems with current diffusion models: (1) that contagions can only spread along observed ties, and (2) that contagions do not change as they spread between people. I augment insights from these statistical and simulation models with an analysis of an empirical case of diffusion - the use of enterprise collaboration software in a large technology company. I focus the empirical study on when people abandon innovations, a crucial, and understudied aspect of the diffusion of innovations. Using timestamped posts, I analyze when people abandon software to a high degree of detail.

To address the first problem, I suggest a latent space diffusion model. Rather than treating ties as stable conduits for information, the latent space diffusion model treats ties as random draws from an underlying social space, and simulates diffusion over the social space. Theoretically, the social space model integrates both actor ties and attributes simultaneously in a single social plane, while incorporating schemas into diffusion processes gives an explicit form to the reciprocal influences that cognition and social environment have on each other. Practically, the latent space diffusion model produces statistically consistent diffusion estimates where using the network alone does not, and the diffusion with schemas model shows that introducing some cognitive processing into diffusion processes changes the rate and ultimate distribution of the spreading information. To address the second problem, I suggest a diffusion model with schemas. Rather than treating information as though it is spread without changes, the schema diffusion model allows people to modify information they receive to fit an underlying mental model of the information before they pass the information to others. Combining the latent space models with a schema notion for actors improves our models for social diffusion both theoretically and practically.

The empirical case study focuses on how the changing value of an innovation, introduced by the innovations' network externalities, influences when people abandon the innovation. In it, I find that people are least likely to abandon an innovation when other people in their neighborhood currently use the software as well. The effect is particularly pronounced for supervisors' current use and number of supervisory team members who currently use the software. This case study not only points to an important process in the diffusion of innovation, but also suggests a new approach -- computerized collaboration systems -- to collecting and analyzing data on organizational processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a vector autorregresive model (VAR) is applied to examine the interrelationship among foreign direct investment, exports, Gross Domestic Product (GDP), unemployment rate and labor force participation rate in Puerto Rico, taking into account a time period that includes the fiscal years from 1980 to 2010 -- Four cointegrating vectors were found in the system which indicates that there is a long run relationship between the variables -- The findings suggest that consecutive increases in foreign direct investment inflows could significantly reduce the unemployment rate and increase interest in joining the labor force in Puerto Rico -- The same result also applies to increases in export levels -- The variations in Gross Domestic Product are mainly explained in the long run by the unemployment rate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social interactions have been the focus of social science research for a century, but their study has recently been revolutionized by novel data sources and by methods from computer science, network science, and complex systems science. The study of social interactions is crucial for understanding complex societal behaviours. Social interactions are naturally represented as networks, which have emerged as a unifying mathematical language to understand structural and dynamical aspects of socio-technical systems. Networks are, however, highly dimensional objects, especially when considering the scales of real-world systems and the need to model the temporal dimension. Hence the study of empirical data from social systems is challenging both from a conceptual and a computational standpoint. A possible approach to tackling such a challenge is to use dimensionality reduction techniques that represent network entities in a low-dimensional feature space, preserving some desired properties of the original data. Low-dimensional vector space representations, also known as network embeddings, have been extensively studied, also as a way to feed network data to machine learning algorithms. Network embeddings were initially developed for static networks and then extended to incorporate temporal network data. We focus on dimensionality reduction techniques for time-resolved social interaction data modelled as temporal networks. We introduce a novel embedding technique that models the temporal and structural similarities of events rather than nodes. Using empirical data on social interactions, we show that this representation captures information relevant for the study of dynamical processes unfolding over the network, such as epidemic spreading. We then turn to another large-scale dataset on social interactions: a popular Web-based crowdfunding platform. We show that tensor-based representations of the data and dimensionality reduction techniques such as tensor factorization allow us to uncover the structural and temporal aspects of the system and to relate them to geographic and temporal activity patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-phase electrical drives are potential candidates for the employment in innovative electric vehicle powertrains, in response to the request for high efficiency and reliability of this type of application. In addition to the multi-phase technology, in the last decades also, multilevel technology has been developed. These two technologies are somewhat complementary since both allow increasing the power rating of the system without increasing the current and voltage ratings of the single power switches of the inverter. In this thesis, some different topics concerning the inverter, the motor and the fault diagnosis of an electric vehicle powertrain are addressed. In particular, the attention is focused on multi-phase and multilevel technologies and their potential advantages with respect to traditional technologies. First of all, the mathematical models of two multi-phase machines, a five-phase induction machine and an asymmetrical six-phase permanent magnet synchronous machines are developed using the Vector Space Decomposition approach. Then, a new modulation technique for multi-phase multilevel T-type inverters, which solves the voltage balancing problem of the DC-link capacitors, ensuring flexible management of the capacitor voltages, is developed. The technique is based on the proper selection of the zero-sequence component of the modulating signals. Subsequently, a diagnostic technique for detecting the state of health of the rotor magnets in a six-phase permanent magnet synchronous machine is established. The technique is based on analysing the electromotive force induced in the stator windings by the rotor magnets. Furthermore, an innovative algorithm able to extend the linear modulation region for five-phase inverters, taking advantage of the multiple degrees of freedom available in multi-phase systems is presented. Finally, the mathematical model of an eighteen-phase squirrel cage induction motor is defined. This activity aims to develop a motor drive able to change the number of poles of the machine during the machine operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to both the widespread and multipurpose use of document images and the current availability of a high number of document images repositories, robust information retrieval mechanisms and systems have been increasingly demanded. This paper presents an approach to support the automatic generation of relationships among document images by exploiting Latent Semantic Indexing (LSI) and Optical Character Recognition (OCR). We developed the LinkDI (Linking of Document Images) service, which extracts and indexes document images content, computes its latent semantics, and defines relationships among images as hyperlinks. LinkDI was experimented with document images repositories, and its performance was evaluated by comparing the quality of the relationships created among textual documents as well as among their respective document images. Considering those same document images, we ran further experiments in order to compare the performance of LinkDI when it exploits or not the LSI technique. Experimental results showed that LSI can mitigate the effects of usual OCR misrecognition, which reinforces the feasibility of LinkDI relating OCR output with high degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from the Durbin algorithm in polynomial space with an inner product defined by the signal autocorrelation matrix, an isometric transformation is defined that maps this vector space into another one where the Levinson algorithm is performed. Alternatively, for iterative algorithms such as discrete all-pole (DAP), an efficient implementation of a Gohberg-Semencul (GS) relation is developed for the inversion of the autocorrelation matrix which considers its centrosymmetry. In the solution of the autocorrelation equations, the Levinson algorithm is found to be less complex operationally than the procedures based on GS inversion for up to a minimum of five iterations at various linear prediction (LP) orders.