324 resultados para symplectic invariants
Resumo:
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.
Resumo:
En aquest treball realitzem un estudi sobre la detecció y la descripció de punts característics, una tecnologia que permet extreure informació continguda en les imatges. Primerament presentem l'estat de l'art juntament amb una avaluació dels mètodes més rellevants. A continuació proposem els nous mètodes que hem creat de detecció i descripció, juntament amb l'algorisme òptim anomenat DART, el qual supera l'estat de l'art. Finalment mostrem algunes aplicacions on s'utilitzen els punts DART. Basant-se en l'aproximació de l'espai d'escales Gaussià, el detector proposat pot extreure punts de distint tamany invariants davant canvis en el punt de vista, la rotació i la iluminació. La reutilització de l'espai d'escales durant el procés de descripció, així com l'ús d'estructures simplificades i optimitzades, permeten realitzar tot el procediment en un temps computacional menor a l'obtingut fins al moment. Així s'aconsegueixen punts invariants i distingibles de forma ràpida, el qual permet la seva utilització en aplicacions com el seguiment d'objectes, la reconstrucció d'escenaris 3D i en motors de cerca visual.
Resumo:
La recherche de représentations idéales de noeuds conduit à la définition de nouveaux invariants, utiles à l'étude des noeuds dans les polymères
Resumo:
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.
Resumo:
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemannian foliation, solving a problem that has been open for many years. We also consider more general indices given by twisting the basic Dirac operator by a representation of the orthogonal group. The formula is a sum of integrals over blowups of the strata of the foliation and also involves eta invariants of associated elliptic operators. As a special case, a Gauss-Bonnet formula for the basic Euler characteristic is obtained using two independent proofs.
Resumo:
Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2n) and compute the fractional hypertree-width of H in time O(1.734601n.m).1
Resumo:
Projecte de recerca elaborat a partir d’una estada a la University of Groningen, Holanda, entre 2007 i 2009. La simulació directa de la turbulència (DNS) és una eina clau dins de la mecànica de fluids computacional. Per una banda permet conèixer millor la física de la turbulència i per l'altra els resultats obtinguts són claus per el desenvolupament dels models de turbulència. No obstant, el DNS no és una tècnica vàlida per a la gran majoria d'aplicacions industrials degut al elevats costos computacionals. Per tant, és necessari cert grau de modelització de la turbulència. En aquest context, s'han introduïts importants millores basades en la modelització del terme convectiu (no lineal) emprant symmetry-preserving regularizations. En tracta de modificar adequadament el terme convectiu a fi de reduir la producció d'escales més i més petites (vortex-stretching) tot mantenint tots els invariants de les equacions originals. Fins ara, aquest models s'han emprat amb èxit per nombres de Rayleigh (Ra) relativament elevats. En aquest punt, disposar de resultats DNS per a configuracions més complexes i nombres de Ra més elevats és clau. En aquest contexte, s'han dut a terme simulacions DNS en el supercomputador MareNostrum d'una Differentially Heated Cavity amb Ra=1e11 i Pr=0.71 durant el primer any dels dos que consta el projecte. A més a més, s'ha adaptat el codi a fi de poder simular el fluxe al voltant d'un cub sobre una pared amb Re=10000. Aquestes simulacions DNS són les més grans fetes fins ara per aquestes configuracions i la seva correcta modelització és un gran repte degut la complexitat dels fluxes. Aquestes noves simulacions DNS estan aportant nous coneixements a la física de la turbulència i aportant resultats indispensables per al progrés de les modelitzacións tipus symmetry-preserving regularization.
Resumo:
Profiling miRNA levels in cells with miRNA microarrays is becoming a widely used technique. Although normalization methods for mRNA gene expression arrays are well established, miRNA array normalization has so far not been investigated in detail. In this study we investigate the impact of normalization on data generated with the Agilent miRNA array platform. We have developed a method to select nonchanging miRNAs (invariants) and use them to compute linear regression normalization coefficients or variance stabilizing normalization (VSN) parameters. We compared the invariants normalization to normalization by scaling, quantile, and VSN with default parameters as well as to no normalization using samples with strong differential expression of miRNAs (heart-brain comparison) and samples where only a few miRNAs are affected (by p53 overexpression in squamous carcinoma cells versus control). All normalization methods performed better than no normalization. Normalization procedures based on the set of invariants and quantile were the most robust over all experimental conditions tested. Our method of invariant selection and normalization is not limited to Agilent miRNA arrays and can be applied to other data sets including those from one color miRNA microarray platforms, focused gene expression arrays, and gene expression analysis using quantitative PCR.
Resumo:
El projecte centra els seus esforços en la darrera activitat: el refactoring d'ontologies. En concret, les expressades en OWL, el llenguatge per a ontologies pensat pel W3C. El resultat final del projecte ha estat la implementació en Java d'un plugin per a Protégé que permet l'execució d'operacions de refactoring sobre ontologies OWL. Part principal del plugin és un framework que ofereix el marc d'execució per a les operacions implementades i permet incorporar noves operacions sense haver-lo de modificar.
Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories
Resumo:
The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way,one can mimick the presymplectic constraint algorithm to obtain a constraint algorithmthat can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations offield theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.
Resumo:
The principal objective of the knot theory is to provide a simple way of classifying and ordering all the knot types. Here, we propose a natural classification of knots based on their intrinsic position in the knot space that is defined by the set of knots to which a given knot can be converted by individual intersegmental passages. In addition, we characterize various knots using a set of simple quantum numbers that can be determined upon inspection of minimal crossing diagram of a knot. These numbers include: crossing number; average three-dimensional writhe; number of topological domains; and the average relaxation value
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.
Resumo:
To quantify the vibrational anharmonicity of the long-wavelength acoustic modes of bcc Cu74.1Al23.1Be2.8 near its martensitic transition temperature Ms (261 K), the hydrostatic pressure derivatives (¿CIJ/¿P)P=0 of the elastic stiffness moduli have been measured. The Grüneisen parameters at 268 K (just above Ms), especially of longitudinal modes, which become smaller than those of the shear modes, are quite different from those at 295 K: the anharmonicity changes markedly in the vicinity of the transition. Similar trends are noted for Cu66.5Al12.7Zn20.8. Experimental data near Ms are used to estimate cubic invariants in the strain order parameters in a Landau formalism.
Resumo:
Diffeomorphism-induced symmetry transformations and time evolution are distinct operations in generally covariant theories formulated in phase space. Time is not frozen. Diffeomorphism invariants are consequently not necessarily constants of the motion. Time-dependent invariants arise through the choice of an intrinsic time, or equivalently through the imposition of time-dependent gauge fixation conditions. One example of such a time-dependent gauge fixing is the Komar-Bergmann use of Weyl curvature scalars in general relativity. An analogous gauge fixing is also imposed for the relativistic free particle and the resulting complete set time-dependent invariants for this exactly solvable model are displayed. In contrast with the free particle case, we show that gauge invariants that are simultaneously constants of motion cannot exist in general relativity. They vary with intrinsic time.