Unified formalism for non-autonomous mechanical systems
Contribuinte(s) |
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV |
---|---|
Data(s) |
10/05/2012
|
Resumo |
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism. |
Identificador | |
Idioma(s) |
eng |
Publicador |
AIP |
Direitos |
Consulteu les condicions d'ús d'aquest document en el repositori original:<a href="http://hdl.handle.net/2117/2654">http://hdl.handle.net/2117/2654</a> |
Palavras-Chave | #Àrees temàtiques de la UPC::Matemàtiques i estadística #Field theory #Lagrangian and Hamiltonian formalisms #Time-dependent mechanical systems #Sistemes dinàmics diferenciables #Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry #Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems #Classificació AMS::55 Algebraic topology::55R Fiber spaces and bundles #Classificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics |
Tipo |
info:eu-repo/semantics/workingPaper |