990 resultados para surface sites
Resumo:
Epidemiological studies have demonstrated that exposure to fine particles is associated to adverse health effects, including cancer, respiratory and cardiovascular diseases. However, mechanisms by which particles induce health effects remain unclear. According to one of the most investigated hypotheses, particles cause adverse effects through the production of reactive oxygen species (ROS), which are very hazardous compounds able to attack directly biological structures, including the DNA strand or the lipid bilayer of the cells. If the defense mechanisms, constituted of antioxidants, are not able to counter ROS, then these compounds will cause in the body a range of oxidation reactions called "oxidative stress". The aim of the present research project was to better understand mechanisms by which exposure to fine particles induces oxidative stress. The first point of this project was to check whether exposure to high levels of fine particles is directly linked to oxidative stress, and whether this oxidative stress is accompanied by the activation of the defense mechanisms (antioxidants). The second point was to study the role played by the particle surface characteristics in the oxidative stress process. For that purpose, a study was conducted in bus depots with the participation of 40 mechanics. First, occupational exposure to particles (PM4) and to other pollutants (NOx, O3) was measured over a two-day period. Then, urine samples of mechanics were collected in order to measure levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and antioxidants. 8OHdG is a molecule formed by the oxidation of DNA and allowing to assess the oxidative stress status of the mechanics. Finally, particles were collected on filters, and functional groups located on the particle surface were analyzed in the laboratory using a Knudsen flow reactor. This technique allows not only to quantify functional groups on the particle surface, but also to measure the reaction kinetics. Results obtained during the field campaign in bus depots showed that mechanics were exposed to rather low levels of PM4 (20-85 μg/m3) and of pollutants (NOx: 100-1000 ppb; O3: <15 ppb). However, despite this low exposure, urinary levels of the oxidative stress biomarker (8OHdG) increased significantly for non-smoking workers over a two-day period of shift. This oxidative stress was accompanied by an increase of antioxidants, indicating the activation of defense mechanisms. On the other hand, the analysis of functional groups on the particle surface showed important differences, depending on the workplace, the date and the activities of workers. The particle surface contained simultaneously antagonistic functional groups which did not undergo internal reactions (such as acids and bases), and was usually characterized by a high density of carbonyl functions and a low density of acidic sites. Reaction kinetics measured using the Knudsen flow reactor pointed out fast reactions of oxidizable groups and slow reactions of acidic sites. Several exposure parameters were significantly correlated with the increase of the oxidative stress status: the presence of acidic sites, carbonyl functions and oxidizable groups on the particle surface; reaction kinetics of functional groups on the particle surface; particulate iron and copper concentrations; and NOx concentration.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). (Demirdjian et al., 2005). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Size distributions indicated that particles are within the nanometric range. Surface characteristics of sampled particles varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean levels of 8- hydroxy-2'-deoxyguanosine and several aldehydes (hexanal, heptanal, octanal, nonanal) increased during two consecutive days of exposure for non-smokers. In order to bring some insight into the relation between the particulate characteristics and the formation of ROS by-products, biomarkers levels will be discussed in relation with exposure variables.
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Resumo:
Platelet adhesion, the initial step of platelet activation, is mediated by the interaction of von Willebrand factor (VWF) with its platelet receptor, the GPIb-IX complex. The binding of VWF to GPIb-IX is induced either by increased shear stress or by exogenous modulators, such as botrocetin. At a molecular level, this interaction takes place between the A1 domain of VWF and the GPIb alpha chain of the GPIb-IX complex. We report here the design and functional characteristics of a VWF template-assembled synthetic protein (TASP), a chimeric four-helix-bundle TASP scaffold mimicking the surface of the A1 domain. Twelve residues located on helices alpha 3 and alpha 4 in the native A1 domain were grafted onto a surface formed by two neighboring helices of the TASP. VWF TASP was found to inhibit specifically botrocetin-induced platelet aggregation and to bind both botrocetin and GPIb alpha. However, in contrast to the native A1 domain, VWF TASP did not bind simultaneously to both ligands. Modeling studies revealed that the relative orientation of the alpha helices in VWF TASP led to a clash of bound botrocetin and GPIb alpha. These results demonstrate that a chimeric four-helix-bundle TASP as a scaffold offers a suitable surface for presenting crucial residues of the VWF A1 domain; the potential of the TASP approach for de novo protein design and mimicry is thereby illustrated.
Resumo:
To study different temporal components on cancer mortality (age, period and cohort) methods of graphic representation were applied to Swiss mortality data from 1950 to 1984. Maps using continuous slopes ("contour maps") and based on eight tones of grey according to the absolute distribution of rates were used to represent the surfaces defined by the matrix of various age-specific rates. Further, progressively more complex regression surface equations were defined, on the basis of two independent variables (age/cohort) and a dependent one (each age-specific mortality rate). General patterns of trends in cancer mortality were thus identified, permitting definition of important cohort (e.g., upwards for lung and other tobacco-related neoplasms, or downwards for stomach) or period (e.g., downwards for intestines or thyroid cancers) effects, besides the major underlying age component. For most cancer sites, even the lower order (1st to 3rd) models utilised provided excellent fitting, allowing immediate identification of the residuals (e.g., high or low mortality points) as well as estimates of first-order interactions between the three factors, although the parameters of the main effects remained still undetermined. Thus, the method should be essentially used as summary guide to illustrate and understand the general patterns of age, period and cohort effects in (cancer) mortality, although they cannot conceptually solve the inherent problem of identifiability of the three components.
Resumo:
Water degradation is strongly related to agricultural activity. The aim of this study was to evaluate the influence of land use and some environmental components on surface water quality in the Campestre catchment, located in Colombo, state of Parana, Brazil. Physical and chemical attributes were analyzed (total nitrogen, ammonium, nitrate, total phosphorus, electrical conductivity, pH, temperature, turbidity, total solids, biological oxygen demand, chemical oxygen demand and dissolved oxygen). Monthly samples of the river water were taken over one year at eight monitoring sites, distributed over three sub-basins. Overall, water quality was worse in the sub-basin with a higher percentage of agriculture, and was also affected by a lower percentage of native forest and permanent preservation area, and a larger drainage area. Water quality was also negatively affected by the presence of agriculture in the riparian zone. In the summer season, probably due to higher rainfall and intensive soil use, a higher concentration of total nitrogen and particulate nitrogen was observed, as well as higher electrical conductivity, pH and turbidity. All attributes, except for total phosphorus, were in compliance with Brazilian Conama Resolution Nº 357/2005 for freshwater class 1. However, it should be noted that these results referred to the base flow and did not represent a discharge condition since most of the water samples were not collected at or near the rainfall event.
Resumo:
ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation), considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]
Resumo:
This research project covered a wide range of activities that allowed researchers to understand the relationship between stability, pavement distress, and recycled portland cement concrete (RPCC) subbase aggregate materials. Detailed laboratory and field tests, including pavement distress surveys, were conducted at 26 sites in Iowa. Findings show that specific gravities of RPCC are lower than those of crushed limestone. RPCC aggregate material varies from poorly or well-graded sand to gravel. A modified Micro-Deval test procedure showed that abrasion losses of virgin aggregate materials were within the maximum Micro-Deval abrasion loss of 30% recommended by ASTM D6028-06. Micro-Deval abrasion loss of RPCC aggregate materials, however, was much higher than that of virgin materials and exceeded 30% loss. Modulus of elasticity of RPCC subbase materials is high but variable. RPCC subbase layers normally have low permeability. The pavement surfaces for both virgin and RPCC subbase across Iowa were evaluated to fulfill the objectives of this study related to field evaluation. Visual distress surveys were conducted to gather the detailed current pavement condition information including the type, extent, and severity of the pavement distresses. The historical pavement condition information for the surveyed field sections was extracted from the Iowa DOT's Pavement Management Information System (PMIS). The current surface condition of existing field pavements with RPCC subbase was compared with the virgin aggregate subbase sections using two different approaches. The changes in pavement condition indices (PCI and IRI) with time for both types of pavements (subbases) were compared.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
In anticipation of regulation involving numeric turbidity limit at highway construction sites, research was done into the most appropriate, affordable methods for surface water monitoring. Measuring sediment concentration in streams may be conducted a number of ways. As part of a project funded by the Iowa Department of Transportation, several testing methods were explored to determine the most affordable, appropriate methods for data collection both in the field and in the lab. The primary purpose of the research was to determine the exchangeability of the acrylic transparency tube for water clarity analysis as compared to the turbidimeter.
Resumo:
L'aquifère du Seeland représente une richesse en ressources hydriques qu'il est impératif de préserver contre tout risque de détérioration. Cet aquifère prolifique est constitué principalement de sédiments alluviaux post-glaciaires (graviers, sables et limons). Il est soumis aux contraintes environnementales des pratiques d'agriculture intensive, du réseau routier, des villes et de leurs activités industrielles. La connaissance optimale de ces ressources est donc primordiale pour leur protection. Dans cette optique, deux sites Kappelen et Grenchen représentatifs de l'aquifère du Seeland ont été étudiés. L'objectif de ce travail est de caractériser d'un point de vue hydrogéophysique l'aquifère au niveau de ces deux sites, c'est-à-dire, comprendre la dynamique des écoulements souterrains par l'application des méthodes électriques de surface associées aux diagraphies en intégrant des méthodes hydrogéologiques. Pour le site de Kappelen, les méthodes électriques de surface ont permis d'identifier les différents faciès géoélectriques en présence et de mettre en évidence leur disposition en une structure tabulaire et horizontale. Il s'agit d'un aquifère libre constitué d'une série de graviers allant jusqu'à 15 m de profondeur reposant sur de la moraine argileuse. Les diagraphies électriques, nucléaires et du fluide ont servis à la détermination des caractéristiques pétrophysiques et hydrauliques de l'aquifère qui contrôlent son comportement hydrodynamique. Les graviers aquifères de Kappelen présentent deux minéraux dominants: quartz et calcite. Les analyses minéralogiques indiquent que ces deux éléments constituent 65 à 75% de la matrice. La porosité totale obtenue par les diagraphies nucléaires varie de 20 à 30 %, et de 22 à 29 % par diagraphies électrique. Avec les faibles valeurs de Gamma Ray ces résultats indiquent que l'aquifère des graviers de Kappelen est dépourvu d'argile minéralogique. La perméabilité obtenue par diagraphies du fluide varie de 3.10-4 à 5.10-2 m/s, et par essais de pompage de 10-4 à 10-2 m/s. Les résultats des analyses granulométriques indiquent une hétérogénéité granulométrique au niveau des graviers aquifères. La fraction de sables, sables très fins, silts et limons constitue de 10 à 40 %. Ces éléments jouent un rôle important dans le comportement hydraulique de l'aquifère. La porosité efficace de 11 à 25% estimée à partir des résultats des analyses granulométriques suppose que les zones les plus perméables correspondent aux zones les plus graveleuses du site. Etablie sur le site de Kappelen, cette méthodologie a été utilisée sur le site de Grenchen. Les méthodes électriques de surface indiquent que l'aquifère captif de Grenchen est constitué des sables silteux comprenant des passages sableux, encadrés par des silts argileux imperméables. L'aquifère de Grenchen est disposé dans une structure relativement tabulaire et horizontale. Son épaisseur totale peut atteindre les 25 m vers le sud et le sud ouest ou les passages sableux sont les plus importants. La détermination des caractéristiques pétrophysiques et hydrauliques s'est faite à l'aide des diagraphies. Les intensités Gamma Ray varient de 30 à 100 cps, les plus fortes valeurs n'indiquent qu'une présence d'éléments argileux mais pas de bancs d'argile. Les porosités totales de 15 à 25% et les densités globales de 2.25 à 2.45 g/cm3 indiquent que la phase minérale (matrice) est composée essentiellement de quartz et de calcaire. Les densités de matrice varient entre 2.65 et 2.75 g/cm3. La perméabilité varie de 2 10-6 à 5 10-4 m/s. La surestimation des porosités totales à partir des diagraphies électriques de 25 à 42% est due à la présence d'argiles. -- The vast alluvial Seeland aquifer system in northwestern Switzerland is subjected to environmental challenges due to intensive agriculture, roads, cities and industrial activities. Optimal knowledge of the hydrological resources of this aquifer system is therefore important for their protection. Two representative sites, Kappelen and Grenchen, of the Seeland aquifer were investigated using surface-based geoelectric methods and geophysical borehole logging methods. By integrating of hydrogeological and hydrogeophysical methods, a reliable characterization of the aquifer system at these two sites can be performed in order to better understand the governing flow and transport process. At the Kappelen site, surface-based geoelectric methods allowed to identify various geoelectric facies and highlighted their tabular and horizontal structure. It is an unconfined aquifer made up of 15 m thick gravels with an important sandy fraction and bounded by a shaly glacial aquitard. Electrical and nuclear logging measurements allow for constraining the petrophysical and hydrological parameters of saturated gravels. Results indicate that in agreement with mineralogical analyses, matrix of the probed formations is dominated by quartz and calcite with densities of 2.65 and 2.71 g/cc, respectively. These two minerals constitute approximately 65 to 75 % of the mineral matrix. Matrix density values vary from 2.60 to 2.75 g/cc. Total porosity values obtained from nuclear logs range from 20 to 30 % and are consistent with those obtained from electrical logs ranging from 22 to 29 %. Together with the inherently low natural gamma radiation and the matrix density values obtained from other nuclear logging measurements, this indicates that at Kappelen site the aquifer is essentially devoid of clay. Hydraulic conductivity values obtained by the Dilution Technique vary between 3.10-4 and 5.10-2 m/s, while pumping tests give values ranging from 10-4 to 10-2 m/s. Grain size analysis of gravel samples collected from boreholes cores reveal significant granulometric heterogeneity of these deposits. Calculations based on these granulometric data have shown that the sand-, silt- and shale-sized fractions constitute between 10 and 40 % of the sample mass. The presence of these fine elements in general and their spatial distribution in particular are important as they largely control the distribution of the total and effective porosity as well as the hydraulic conductivity. Effective porosity values ranging from 11 to 25% estimated from grain size analyses indicate that the zones of higher hydraulic conductivity values correspond to the zones dominated by gravels. The methodology established at the Kappelen site was then applied to the Grenchen site. Results from surface-based geoelectric measurements indicate that it is a confined aquifer made up predominantly of shaly sands with intercalated sand lenses confined impermeable shally clay. The Grenchen confined aquifer has a relatively tabular and horizontal structure with a maximum thickness of 25 m in the south and the southwest with important sand passages. Petrophysical and hydrological characteristics were performed using electrical and nuclear logging. Natural gamma radiation values ranging from 30 to 100 cps indicate presence of a clay fraction but not of pure clay layers. Total porosity values obtained from electrical logs vary form 25 to 42%, whereas those obtained from nuclear logs values vary from 15 to 25%. This over-estimation confirms presences of clays. Density values obtained from nuclear logs varying from 2.25 to 2.45 g/cc in conjunction with the total porosity values indicate that the dominating matrix minerals are quartz and calcite. Matrix density values vary between 2.65 and 2.75 g/cc. Hydraulic conductivity values obtained by the Dilution Technique vary from 2 10-6 to 5 10-4 m/s.
Resumo:
Selection of amino acid substitutions associated with resistance to nucleos(t)ide-analog (NA) therapy in the hepatitis B virus (HBV) reverse transcriptase (RT) and their combination in a single viral genome complicates treatment of chronic HBV infection and may affect the overlapping surface coding region. In this study, the variability of an overlapping polymerase-surface region, critical for NA resistance, is investigated before treatment and under antiviral therapy, with assessment of NA-resistant amino acid changes simultaneously occurring in the same genome (linkage analysis) and their influence on the surface coding region.
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
Through an interplay between scanning tunneling microscopy experiments and density functional theory calculations, we determine unambiguously the active surface site responsible for the dissociation of water molecules adsorbed on rutile TiO2(110). Oxygen vacancies in the surface layer are shown to dissociate H2O through the transfer of one proton to a nearby oxygen atom, forming two hydroxyl groups for every vacancy. The amount of water dissociation is limited by the density of oxygen vacancies present on the clean surface exclusively. The dissociation process sets in as soon as molecular water is able to diffuse to the active site.