988 resultados para sexual differentiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated a Lake Victoria cichlid with a complex colour polymorphism that apparently represents one original species and two incipient species, all of which are sympatric. In laboratory breeding experiments we observed sex ratio distortion in certain matings between original and incipient species. Mate choice experiments show that males of the incipient species exhibit mating preferences against the original species, and males and females of the original species exhibit strong mating preferences against the incipient species. Mating preferences might evolve by sex ratio selection to avoid matings with distorted progeny sex ratios. Phenotype frequencies in nature suggest that mating preferences translate into mating frequencies, thus restricting gene flow and exerting disruptive sexual selection between the original and incipient species. The incipient species do not differ in morphology or ecology from the original species, implying that colour polymorphism, associated with sex ratio distortion, can be an incipient stage in sympatric speciation, and that disruption of gene flow can precede ecological differentiation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sry and Wnt4 cDNAs were individually introduced into the ubiquitously-expressed Rosa26 ( R26) locus by gene targeting in embryonic stem (ES) cells to create a conditional gene expression system in mice. In the targeted alleles, expression of these cDNAs should be blocked by a neomycin resistance selection cassette that is flanked by loxP sites. Transgene expression should be activated after the blocking cassette is deleted by Cre recombinase. ^ To test this conditional expression system, I have bred R26-stop- Sry and R26-stop-Wnt4 heterozygotes with a MisRII-Cre mouse line that expresses Cre in the gonads of both sexes. Analysis of these two types of bigenic heterozygotes indicated that their gonads developed normally like those of wild types. However, one XX R26-Sry/R26-Sry; MisR2-Cre/+ showed epididymis-like structures resembling those of males. In contrast, only normal phenotypes were observed in XY R26-Wnt4/R26-Wnt4; MisR2-Cre /+ mice. To interpret these results, I have tested for Cre recombinase activity by Southern blot and transcription of the Sry and Wnt4 transgenes by RT-PCR. Results showed that bigenic mutants had insufficient activation of the transgenes in their gonads at E12.5 and E13.5. Therefore, the failure to observe mutant phenotypes may have resulted from low activity of MisR2-Cre recombination at the appropriate time. ^ Col2a1-Cre transgenic mice express Cre in differentiating chondrocytes. R26-Wnt4; Col2a1-Cre bigenic heterozygous mice were found to exhibit a dramatic alteration in growth presumably caused by Wnt4 overexpression during chondrogenesis. R26-Wnt4; Col2a1-Cre mice exhibited dwarfism beginning approximately 10 days after birth. In addition, they also had craniofacial abnormalities, and had delayed ossification of the lumbar vertebrate and pelvic bones. Histological analysis of the growth plates of R26-Wnt4; Col2a1-Cre mice revealed less structural organization and a delay in onset of the primary and secondary ossification centers. Molecular studies confirmed that overexpression of Wnt4 causes decreased proliferation and early maturation of chondrocytes. In addition, R26-Wnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF), suggesting that defects in vascularization may contribute to the dwarf phenotype. Finally, 9-month-old R26-Wnt4; Col2a1-Cre mice had significantly more fat cells in the marrow cavities of their metaphysis long bones, implying that long-term overexpression of Wnt4may cause bone marrow pathologies. In conclusion, Wnt4 was activated by Col2a1-Cre recombinase and was overexpressed in the growth plate, resulting in aberrant proliferation and differentiation of chondrocytes, and ultimately leads to dwarfism in mice. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally believed that Drosophila melanogaster has no closely related species with which it can produce the viable and fertile hybrids that are essential for the genetic analysis of speciation. Following the recent report of molecular differentiation between a Zimbabwe, Africa, population and two United States populations, we provide evidence that strong sexual isolation exists between the D. melanogaster population in Zimbabwe and populations of other continents. In the presence of males of their own kind, females from most isofemale lines of Zimbabwe would not mate with males from elsewhere; the reciprocal mating is also significantly reduced, but to a lesser degree. The genes for sexual behaviors are apparently polymorphic in Zimbabwe and postmating reproductive isolation between this and other populations has not yet evolved. Whole chromosome substitutions indicate significant genetic contributions to male mating success by both major autosomes, whereas the X chromosome effect is too weak to measure. In addition, the relative mating success between hybrid and pure line males supports the interpretation of strong female choice. These observations suggest that we are seeing the early stages of speciation in this group and that it is driven by sexual selection. The genetic and molecular tractability of D. melanogaster offers great promise for the detailed analysis of this apparent case of incipient speciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El lenguado de California Paralichthys californicus es una especie con alto valor comercial debido a su gran tamaño y calidad de su carne. Esta especie presenta dimorfismo sexual en el crecimiento donde las hembras crecen más rápido que los machos, por lo tanto el cultivo monosexual de hembras resulta favorable para la producción. En el presente estudio se registró el proceso de diferenciación sexual mediante cortes histológicos de las larvas y gónadas del lenguado de California asimismo se probó el efecto de diferentes concentraciones de 17β-estradiol (E2) (2.5, 5 y 10 mg/kg) a través de la dieta para incrementar la proporción de hembras en el cultivo. A los 25 días después de la eclosión (DDE) se observó el primordio gonadal en ejemplares con una longitud total promedio de 6.96 ± 0.92 mm, hasta el día 75 DDE (37.58 ± 6.58 mm) se observó una gónada indiferenciada evidenciada por la presencia de células germinales primordiales. La primera evidencia de diferenciación se registró a los 115 DDE (55.93 ± 14.67 mm) donde se observó la cavidad ovárica y posteriormente a los 180 DDE (115.70 ± 17.02 mm) se evidencian ovarios con ovocitos en crecimiento y testículos con espermátidas. Por lo tanto, el periodo lábil para la diferenciación sexual se encuentra entre los días 75 y 115 después de la eclosión. Por otro lado, el suministro de E2 a través de la dieta a concentraciones de 2.5, 5 y 10 mg/kg incrementó el porcentaje de hembras de 26.67% (control, no adición de E2) a un 100% en todos los tratamientos. Se encontraron diferencias en la proporción de los tipos celulares (ovogonias, ovocitos primarios en fase I y II) entre el control y los tratamientos mientras que no se registraron alteraciones histológicas como atrofia gonadal en ninguno de los casos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a critical gene involved in mammalian sex determination and differentiation. Both genes encode proteins with the ability to bind similar DNA target sequences, and to activate transcription in in vitro assays. Expression studies indicate that the two genes have largely overlapping patterns of activity during mammalian embryonic development. A knockout of Sox8 in mice has no obvious developmental phenotype, suggesting that the two genes are able to act redundantly in a variety of developmental contexts. In particular, both genes are expressed in the developing Sertoli cell lineage of the developing testes in mice, and both proteins are able to activate transcription of the gene encoding anti-Mullerian hormone (AMH), through synergistic action with steroidogenic factor I (SF1). We have hypothesized that Sox8 may substitute for Sox9 in species where Sox9 is expressed too late to be involved in sex determination or regulation of Amh expression. However, our studies involving the red-eared slider turtle indicate that Sox8 is expressed at similar levels in males and females throughout the sex-determining period, suggesting that Sox8 is neither a transcriptional regulator for Amh, nor responsible for sex determination or gonad differentiation in that species. Similarly, Sox8 is not expressed in a sexually dimorphic pattern during gonadogenesis in the chicken. Since a functional role(s) for Sox8 is implied by its conservation during evolution, the significance of Sox8 for sexual and other aspects of development will need to be uncovered through more directed lines of experimentation. Copyright (C) 2003 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated expression of tumour necrosis factora (TNF-a) is associated with adverse pregnancy outcome. This study has examined the expression of TNF-a and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF-a on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RTPCR demonstrated TNF-a mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF-a expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF-a (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF-a-treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean € SD 23.90€10.42 vs 9.37€7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97€8.14 vs 21.73€7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF-a-treated outgrowths exhibited a significant increase in multinucleated cells (14.10€5.53 vs 6.37€5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87€3.60 vs 15.37€5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF-a and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF-a restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.