964 resultados para parchi divertimento teoria dei grafi analisi combinatoria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I gruppi risolubili sono tra gli argomenti più studiati nella storia dell'algebra, per la loro ricchezza di proprietà e di applicazioni. Questa tesi si prefigge l'obiettivo di presentare tali gruppi, in quanto argomento che esula da quelli usualmente trattati nei corsi fondamentali, ma che diventa fondamentale in altri campi di studio come la teoria delle equazioni. Il nome di tale classe di gruppi deriva infatti dalla loro correlazione con la risolubilità per formule generali delle equazioni di n-esimo grado. Si ha infatti dalla teoria di Galois che un'equazione di grado n è risolubile per radicali se e solo se il suo gruppo di Galois è risolubile. Da questo spunto di prima e grande utilità, la teoria dei gruppi risolubili ha preso una propria strada, tanto da poter caratterizzare tali gruppi senza dover passare dalla teoria di Galois. Qui viene infatti presentata la teoria dei gruppi risolubili senza far uso di tale teoria: nel primo capitolo esporrò le definizioni fondamentali necessarie per lo studio dei gruppi risolubili, la chiusura del loro insieme rispetto a sottogruppi, quozienti, estensioni e prodotti, e la loro caratterizzazione attraverso la serie derivata, oltre all'esempio più caratteristico tra i gruppi non risolubili, che è quello del gruppo simmetrico. Nel secondo capitolo sono riportati alcuni esempi e controesempi nel caso di gruppi non finiti, tra i quali vi sono il gruppo delle isometrie del piano e i gruppi liberi. Infine nel terzo capitolo viene approfondito il caso dei gruppi risolubili finiti, con alcuni esempi, come i p-gruppi, con un’analisi della risolubilità dei gruppi finiti con ordine minore o uguale a 100.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si pone l'obiettivo di presentare la teoria dei giochi, in particolare di quelli cooperativi, insieme alla teoria delle decisioni, inquadrandole formalmente in termini di matematica discreta. Si tratta di due campi dove l'indagine si origina idealmente da questioni applicative, e dove tuttavia sono sorti e sorgono problemi più tipicamente teorici che hanno interessato e interessano gli ambienti matematico e informatico. Anche se i contributi iniziali sono stati spesso formulati in ambito continuo e utilizzando strumenti tipici di teoria della misura, tuttavia oggi la scelta di modelli e metodi discreti appare la più idonea. L'idea generale è quindi quella di guardare fin da subito al complesso dei modelli e dei risultati che si intendono presentare attraverso la lente della teoria dei reticoli. Ciò consente di avere una visione globale più nitida e di riuscire agilmente ad intrecciare il discorso considerando congiuntamente la teoria dei giochi e quella delle decisioni. Quindi, dopo avere introdotto gli strumenti necessari, si considerano modelli e problemi con il fine preciso di analizzare dapprima risultati storici e solidi, proseguendo poi verso situazioni più recenti, più complesse e nelle quali i risultati raggiunti possono suscitare perplessità. Da ultimo, vengono presentate alcune questioni aperte ed associati spunti per la ricerca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La struttura di gruppo è una delle strutture algebriche più semplici e fondamentali della matematica. Un gruppo si può descrivere in vari modi. Noi abbiamo illustrato la presentazione tramite generatori e relazioni, che consiste sostanzialmente nell'elencare le "regole di calcolo" che valgono nel gruppo considerato, oltre a quelle che derivano dagli assiomi di gruppo. L'idea principale di questa tesi è quella di mostrare come un argomento così tecnico e specifico possa essere reso "elementare" e anche divertente. Siamo partiti dalla costruzione di un gioco, inventando regole da aggiungere di volta in volta. Abbiamo poi tentato di spiegare il medesimo concetto da un punto di vista teorico, tramite la teoria dei gruppi liberi. Si tratta di gruppi che hanno un insieme di generatori soddisfacenti unicamente alle relazioni che sono conseguenza degli assiomi di gruppo.Ogni gruppo è un quoziente di un gruppo libero su un appropriato insieme di generatori per un sottogruppo normale, generato dalle relazioni. Infine si è illustrato il problema della parola formulato da Max Dhen nel 1911, e si è visto come tale problema è risolubile per i gruppi liberi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si inizia generalizzando la teoria dei gruppi a categorie qualsiasi, quindi senza necessariamente un insieme sostegno, studiando anche i cogruppi, ovvero gli oggetti duali dei gruppi, e caratterizzando in termini categoriali tali strutture. Vengono poi studiati oggetti topologici con la struttura di gruppo generalizzato vista inizialmente, compatibile con la struttura topologica. L'utilità degli H-gruppi e dei co-H-gruppi è specialmente in topologia algebrica, dove la struttura di questi oggetti fornisce molte informazioni sul loro comportamento, in termini di gruppi di omotopia e di più generici gruppi di mappe fra loro e altri spazi. Vengono poi dati esempi di questi oggetti, e si studia come i co-H-gruppi, in particolare, permettono di definire i gruppi di omotopia e di dimostrare i risultati fondamentali della teoria dell'omotopia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un sistema sottoposto ad una lenta evoluzione ciclica è descritto da un'Hamiltoniana H(X_1(t),...,X_n(t)) dipendente da un insieme di parametri {X_i} che descrivono una curva chiusa nello spazio di appartenenza. Sotto le opportune ipotesi, il teorema adiabatico ci garantisce che il sistema ritornerà nel suo stato di partenza, e l'equazione di Schrödinger prevede che esso acquisirà una fase decomponibile in due termini, dei quali uno è stato trascurato per lungo tempo. Questo lavoro di tesi va ad indagare principalmente questa fase, detta fase di Berry o, più in generale, fase geometrica, che mostra della caratteristiche uniche e ricche di conseguenze da esplorare: essa risulta indipendente dai dettagli della dinamica del sistema, ed è caratterizzata unicamente dal percorso descritto nello spazio dei parametri, da cui l'attributo geometrico. A partire da essa, e dalle sue generalizzazioni, è stata resa possibile l'interpretazione di nuovi e vecchi effetti, come l'effetto Aharonov-Bohm, che pare mettere sotto una nuova luce i potenziali dell'elettromagnetismo, e affidare loro un ruolo più centrale e fisico all'interno della teoria. Il tutto trova una rigorosa formalizzazione all'interno della teoria dei fibrati e delle connessioni su di essi, che verrà esposta, seppur in superficie, nella parte iniziale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solitamente il concetto di difficoltà è piuttosto soggettivo, ma per un matematico questa parola ha un significato diverso: anche con l’aiuto dei più potenti computer può essere impossibile trovare la soluzione di un sudoku, risolvere l’enigma del commesso viaggiatore o scomporre un numero nei suoi fattori primi; in questo senso le classi di complessità computazionale quantificano il concetto di difficoltà secondo le leggi dell’informatica classica. Una macchina quantistica, però, non segue le leggi classiche e costituisce un nuovo punto di vista in una frontiera della ricerca legata alla risoluzione dei celebri problemi del millennio: gli algoritmi quantistici implementano le proprietà straordinarie e misteriose della teoria dei quanti che, quando applicate lucidamente, danno luogo a risultati sorprendenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi nasce dal voler approfondire lo studio delle curve piane di grado 3 iniziato nel corso di Geometria Proiettiva. In particolare si andrà a studiare la legge di gruppo che si può definire su tali curve e i punti razionali di ordine finito appartenenti alle curve ellittiche. Nel primo capitolo si parla di equazioni diofantee, dell’Ultimo Teorema di Fermat, dell'equazione e della formula di duplicazione di Bachet. Si parla inoltre dello stretto rapporto tra la geometria, l'algebra e la teoria dei numeri nella teoria delle curve ellittiche e come le curve ellittiche siano importanti nella crittografia. Nel secondo capitolo vengono enunciate alcune definizioni, proposizioni e teoremi, riguardanti polinomi e curve ellittiche. Nel terzo capitolo viene introdotta la forma normale di una cubica. Nel quarto capitolo viene descritta la legge di gruppo su una cubica piana non singolare e la costruzione geometrica che porta ad essa; si vede il caso particolare della legge di gruppo per una cubica razionale in forma normale ed inoltre si ricavano le formule esplicite per la somma di due punti appartenenti ad una cubica. Nel capitolo cinque si iniziano a studiare i punti di ordine finito per una curva ellittica con la legge di gruppo dove l'origine è un flesso: vengono descritti e studiati i punti di ordine 2 e quelli di ordine 3. Infine, nel sesto capitolo si studiano i punti razionali di ordine finito qualsiasi: viene introdotto il concetto di discriminante di una cubica e successivamente viene enunciato e dimostrato il teorema di Nagell-Lutz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le funzioni generalizzate sono uno strumento matematico che trova la sua applicazione fisica quando si trattano problemi con discontinuità o singolarità. Risulta perciò necessario formulare una teoria in grado di descrivere completamente questi oggetti e le loro proprietà. Nella teoria delle funzioni generalizzate il problema del loro prodotto è tuttora aperto poiché non esiste un metodo univoco per dare la definizione tra questi oggetti. Lo scopo di questo elaborato è di presentare la teoria delle funzioni generalizzate e i problemi legati al loro prodotto per poi presentare due metodi per affrontarlo, con esempi e risultati di particolare interesse. Vengono mostrati infine alcuni esempi fisici dove la soluzione richiede l'utilizzo di questo apparato matematico vertendo soprattutto sullo stretto legame tra il prodotto di funzioni generalizzate e la procedura della rinormalizzazione nella teoria dei campi quantistici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi vengono presentati i piu recenti risultati relativi all'estensione della teoria dei campi localmente covariante a geometrie che permettano di descrivere teorie di campo supersimmetriche. In particolare, si mostra come la definizione assiomatica possa essere generalizzata, mettendo in evidenza le problematiche rilevanti e le tecniche utilizzate in letteratura per giungere ad una loro risoluzione. Dopo un'introduzione alle strutture matematiche di base, varieta Lorentziane e operatori Green-iperbolici, viene definita l'algebra delle osservabili per la teoria quantistica del campo scalare. Quindi, costruendo un funtore dalla categoria degli spazio-tempo globalmente iperbolici alla categoria delle *-algebre, lo stesso schema viene proposto per le teorie di campo bosoniche, purche definite da un operatore Green-iperbolico su uno spazio-tempo globalmente iperbolico. Si procede con lo studio delle supervarieta e alla definizione delle geometrie di background per le super teorie di campo: le strutture di super-Cartan. Associando canonicamente ad ognuna di esse uno spazio-tempo ridotto, si introduce la categoria delle strutture di super-Cartan (ghsCart) il cui spazio-tempo ridotto e globalmente iperbolico. Quindi, si mostra, in breve, come e possibile costruire un funtore da una sottocategoria di ghsCart alla categoria delle super *-algebre e si conclude presentando l'applicazione dei risultati esposti al caso delle strutture di super-Cartan in dimensione 2|2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi anni la teoria dei network è stata applicata agli ambiti più diversi, mostrando proprietà caratterizzanti tutti i network reali. In questo lavoro abbiamo applicato gli strumenti della teoria dei network a dati cerebrali ottenuti tramite MRI funzionale “resting”, provenienti da due esperimenti. I dati di fMRI sono particolarmente adatti ad essere studiati tramite reti complesse, poiché in un esperimento si ottengono tipicamente più di centomila serie temporali per ogni individuo, da più di 100 valori ciascuna. I dati cerebrali negli umani sono molto variabili e ogni operazione di acquisizione dati, così come ogni passo della costruzione del network, richiede particolare attenzione. Per ottenere un network dai dati grezzi, ogni passo nel preprocessamento è stato effettuato tramite software appositi, e anche con nuovi metodi da noi implementati. Il primo set di dati analizzati è stato usato come riferimento per la caratterizzazione delle proprietà del network, in particolare delle misure di centralità, dal momento che pochi studi a riguardo sono stati condotti finora. Alcune delle misure usate indicano valori di centralità significativi, quando confrontati con un modello nullo. Questo comportamento `e stato investigato anche a istanti di tempo diversi, usando un approccio sliding window, applicando un test statistico basato su un modello nullo pi`u complesso. Il secondo set di dati analizzato riguarda individui in quattro diversi stati di riposo, da un livello di completa coscienza a uno di profonda incoscienza. E' stato quindi investigato il potere che queste misure di centralità hanno nel discriminare tra diversi stati, risultando essere dei potenziali bio-marcatori di stati di coscienza. E’ stato riscontrato inoltre che non tutte le misure hanno lo stesso potere discriminante. Secondo i lavori a noi noti, questo `e il primo studio che caratterizza differenze tra stati di coscienza nel cervello di individui sani per mezzo della teoria dei network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con questa tesi verrà spiegata l'intrinseca connessione tra la matematica della teoria dei numeri e l'affidabilità e sicurezza dei crittosistemi asimmetrici moderni. I principali argomenti trattati saranno la crittografia a chiave pubblica ed il problema della verifica della primalità. Nei primi capitoli si capirà cosa vuol dire crittografia e qual è la differenza tra asimmetria e simmetria delle chiavi. Successivamente verrà fatta maggiore luce sugli utilizzi della crittografia asimmetrica, mostrando tecniche per: comunicare in modo confidenziale, scambiare in modo sicuro chiavi private su un canale insicuro, firmare messaggi, certificare identità e chiavi pubbliche. La tesi proseguirà con la spiegazione di quale sia la natura dei problemi alla base della sicurezza dei crittosistemi asimmetrici oggigiorno più diffusi, illustrando brevemente le novità introdotte dall'avvento dei calcolatori quantistici e dimostrando l'importanza che riveste in questo contesto il problema della verifica della primalità. Per concludere verrà fatta una panoramica di quali sono i test di primalità più efficienti ed efficaci allo stato dell'arte, presentando una nuova tecnica per migliorare l'affidabilità del test di Fermat mediante un nuovo algoritmo deterministico per fattorizzare gli pseudoprimi di Carmichael, euristicamente in tempo O~( log^3{n}), poi modificato sfruttando alcune proprietà del test di Miller per ottenere un nuovo test di primalità deterministico ed euristico con complessità O~( log^2{n} ) e la cui probabilità di errore tende a 0 con n che tende ad infinito.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recentemente sono stati valutati come fisicamente consistenti diversi modelli non-hermitiani sia in meccanica quantistica che in teoria dei campi. La classe dei modelli pseudo-hermitiani, infatti, si adatta ad essere usata per la descrizione di sistemi fisici dal momento che, attraverso un opportuno operatore metrico, risulta possibile ristabilire una struttura hermitiana ed unitaria. I sistemi PT-simmetrici, poi, sono una categoria particolarmente studiata in letteratura. Gli esempi riportati sembrano suggerire che anche le cosiddette teorie conformi non-unitarie appartengano alla categoria dei modelli PT-simmetrici, e possano pertanto adattarsi alla descrizione di fenomeni fisici. In particolare, si tenta qui la costruzione di determinate lagrangiane Ginzburg-Landau per alcuni modelli minimali non-unitari, sulla base delle identificazioni esistenti per quanto riguarda i modelli minimali unitari. Infine, si suggerisce di estendere il dominio del noto teorema c alla classe delle teorie di campo PT-simmetriche, e si propongono alcune linee per una possibile dimostrazione dell'ipotizzato teorema c_{eff}.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo elaborato si propone di approfondire lo studio dei campi finiti, in modo particolare soffermandosi sull’esistenza di una base normale per un campo finito, in quanto l'utilizzo di una tale base ha notevoli applicazioni in ambito crittografico. ​Vengono trattati i seguenti argomenti: elementi di base della teoria dei campi finiti, funzione traccia e funzione norma, basi duali, basi normali. Vengono date due dimostrazioni del Teorema della Base Normale, la seconda delle quali fa uso dei polinomi linearizzati ed è in realtà un po' più generale, in quanto si riferisce ai q-moduli.​

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel 1837 il matematico A.F. Möbius definì la funzione aritmetica mu(n) che vale 0 se n è divisibile per il quadrato di un numero primo, (-1)^k se n è il prodotto di k primi distinti e \mu(1)=1. Essa ricopre un ruolo di fondamentale importanza per quanto riguarda la distribuzione dei numeri primi, nonché per la sua duttilità nella risoluzione di diversi problemi di conteggio grazie alla formula di inversione di Möbius, che può essere pensata come un analogo formale del teorema fondamentale del calcolo integrale. Una sorprendente varietà di problemi di calcolo combinatorio si rivelano essere nient'altro che casi particolari di un problema più generale che riguarda la possibilità di invertire una somma fatta sugli elementi di un insieme parzialmente ordinato. L'obiettivo di questo elaborato è quello di illustrare come sia possibile generalizzare il concetto di funzione aritmetica estendendolo a quello di funzione di un'algebra di incidenza. Le algebre di incidenza hanno catturato l'interesse di svariati matematici a partire dagli anni '60 del secolo scorso, e si svilupparono come ambiente naturale nel quale generalizzare la formula di inversione di Mobius. La funzione di Möbius della teoria dei numeri, definita originariamente sull'insieme dei numeri interi positivi ordinato per divisibilità, può quindi essere definita su generici insiemi parzialmente ordinati.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’intento di questa ricerca è stato quello di cercare di riordinare ed approfondire il settore delle demolizioni, campo vasto e in costante crescita, dove saranno necessari tecnici sempre più specializzati in materia di statica, ambiente, sicurezza ed esplosivistica civile. Nella prima parte della ricerca è stata analizzata l'errata concezione odierna delle demolizioni viste solamente come un mero intervento di distruzione e sono state descritte le principali tecniche di demolizione tradizionali per costruzioni in calcestruzzo armato, suddividendole nelle due famiglie riguardanti le demolizioni parziali e le demolizioni totali, analizzando i vantaggi e gli svantaggi di ognuna di esse e nello specifico evidenziando il grado di compatibilità della singola tecnica in relazione all'intervento da svolgere. Descritte le tecniche sono state studiate le principali verifiche statiche che vengono solitamente effettuate per le demolizioni con esplosivo e le demolizioni meccaniche. Nella seconda parte della tesi si è voluto prestare attenzione riguardo alle origini della demolizione guardando in che modo si sia evoluta sino ad oggi, in particolare le imprese odierne le quali sono attualmente in grado di affrontare qualsiasi problema seguendo il programma del processo demolitivo. L'ultima parte della ricerca consiste nella valutazione e descrizione dei principali fattori di rischio di questi interventi sottolineando ogni tipo di soluzione per poterli evitare, è stato inoltre analizzato molto schematicamente il caso di studio del Palazzo di Giustizia dell'Aquila distrutto a causa del sisma e rinnovato grazie ad interventi demolitivi.