970 resultados para order-disorder phenomena


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SrWO4 (SWO) powders were synthesized by the polymeric precursor method and annealed at different temperatures. The SWO structure was obtained by X-ray diffraction and the corresponding photoluminescence (PL) spectra was measured. The PL results reveal that the structural order-disorder degree in the SWO lattice influences in the PL emission intensity. Only the structurally order-disordered samples present broad and intense PL band in the visible range. To understand the origin of this phenomenon, we performed quantum-mechanical calculations with crystalline and order-disordered SWO periodic models. Their electronic structures were analyzed in terms of band structure. The appearance of localized levels in the band gap of the order-disordered structure was evidenced and is a favorable condition for the intense PL to occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intense and broad visible photoluminescent (PL) band in structurally disordered SrWO4 compounds was observed at room temperature. The polycrystalline scheelite strontium tungstate (SrWO4) samples prepared by the polymeric precursor method at different temperatures of annealing were structurally characterized by x-ray diffraction and Fourier transform Raman spectroscopy measurements. Quantum-mechanical calculations showed that the local disorder in the cluster of the network modifiers Sr has a very important role in the charge transfer. The experimental and theoretical results are in good agreement, indicating that the generation of the intense visible PL band can be related to short-range order-disorder degree in the scheelite structure. (c) 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Violet-blue photoluminescence was produced at room temperature in a structurally disordered SrZrO3 perovskite structure with a 350.7 nm excitation line. The intensity of this emission was higher than that of any other perovskites previously studied. The authors discuss the role of structural order-disorder that favors the self-trapping of electrons and charge transference, as well as a model to elucidate the mechanism that triggers photoluminescence. In this model the wide band model, the most important events occur before excitation. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blue-green and red photoluminescence (PL) emission in structurally disordered CaTiO3:Sm (CT:Sm) powders was observed at room temperature with laser excitation at 350.7 nm. The perovskite-like titanate CT:Sm powders prepared by a soft chemical processing at different temperatures of annealing were structurally characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES). The results indicate that the generation of the broad PL band is related to order-disorder degree in the perovskitelike structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thermally activated photoluminescence memory effect, induced by a reversible order-disorder phase transition of the alkyl chains, is reported for highly organized bilayer alkyl/siloxane hybrids (see figure; left at room temperature, right at 120 degrees C). The emission energy is sensitive to the annihilation/formation of the hydrogen-bonded amide-amide array displaying a unique nanoscopic sensitivity (ca. 150 nm).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NiWO4 and ZnWO4 were synthesized by the polymeric precursor method at low temperatures with zinc or nickel carbonate as secondary phase. The materials were characterized by thermal analysis (TG/DTA), infrared spectroscopy, UV-Vis spectroscopy and X-ray diffraction. NiWO4 was crystalline after calcination at 350 A degrees C/12 h while ZnWO4 only crystallized after calcination at 400 A degrees C for 2 h. Thermal decomposition of the powder precursor of NiWO4 heat treated for 12 h had one exothermic transition, while the precursor heat treated for 24 h had one more step between 600 and 800 A degrees C with a small mass gain. Powder precursor of ZnWO4 presented three exothermic transitions, with peak temperatures and mass losses higher than NiWO4 has indicating that nickel made carbon elimination easier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)