900 resultados para inteligência artificial


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas, deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuro-evolução é um dos métodos de aprendizado por reforço mais proeminentes. Em vista disto, neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Mais detalhadamente, desenvolveu-se uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração, além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Um ambiente de simulação foi desenvolvido e uma série de experimentos realizados com o objetivo de avaliar o modelo proposto e identificar quais os melhores valores para os diversos parâmetros do modelo. O modelo proposto foi aplicado no domínio das tarefas de perseguição-evasão.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Rational Agent model have been a foundational basis for theoretical models such as Economics, Management Science, Artificial Intelligence and Game Theory, mainly by the ¿maximization under constraints¿ principle, e.g. the ¿Expected Utility Models¿, among them, the Subjective Expected Utility (SEU) Theory, from Savage, placed as most influence player over theoretical models we¿ve seen nowadays, even though many other developments have been done, indeed also in non-expected utility theories field. Having the ¿full rationality¿ assumption, going for a less idealistic sight ¿bounded rationality¿ of Simon, or for classical anomalies studies, such as the ¿heuristics and bias¿ analysis by Kahneman e Tversky, ¿Prospect Theory¿ also by Kahneman & Tversky, or Thaler¿s Anomalies, and many others, what we can see now is that Rational Agent Model is a ¿Management by Exceptions¿ example, as for each new anomalies¿s presentation, in sequence, a ¿problem solving¿ development is needed. This work is a theoretical essay, which tries to understand: 1) The rational model as a ¿set of exceptions¿; 2) The actual situation unfeasibility, since once an anomalie is identified, we need it¿s specific solution developed, and since the number of anomalies increases every year, making strongly difficult to manage rational model; 3) That behaviors judged as ¿irrationals¿ or deviated, by the Rational Model, are truly not; 4) That¿s the right moment to emerge a Theory including mental processes used in decision making; and 5) The presentation of an alternative model, based on some cognitive and experimental psychology analysis, such as conscious and uncounscious processes, cognition, intuition, analogy-making, abstract roles, and others. Finally, we present conclusions and future research, that claims for deeper studies in this work¿s themes, for mathematical modelling, and studies about a rational analysis and cognitive models possible integration. .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improvisação tem sido considerada uma característica importante para agentes que pretendem operar de maneira consistente com a situação do momento, exibindo um comportamento credível e interessante. A improvisação deve estar presente tanto nos agentes individuais quanto nas sociedades de agentes. Desta maneira, esta tese irá abordar estes dois aspectos da improvisação. Propomos a visão de que, agentes capazes de realizar improvisação, os agentes improvisacionais, são um tipo de agente deliberativo capaz de solucionar problemas por improvisação. Neste sentido, buscamos identificar dentro de uma arquitetura clássica de agentes deliberativos, a arquitetura BDI (belief-desire-intention), a existência e/ou a possibilidade da inclusão de componentes de improvisação nesta arquitetura. Para resolver problemas complexos, estes agentes precisam estar agrupados em sociedades e estas sociedades, por sua vez, precisam produzir comportamentos coerentes. A coordenação é a área da Inteligência Artificial responsável por este objetivo. Propomos que a coordenação de agentes que improvisam pode ser realizada por meio de um processo de direção improvisacional, no sentido usado no contexto do teatro improvisacional. Ao longo deste documento, iremos mostrar nosso entendimento sobre agentes improvisacionais como agentes deliberativos e coordenação como direção improvisacional. Com isto, defende-se nesta tese que o uso da improvisação em agentes improvisacionais possibilita que os agentes improvisem comportamentos interativos, de maneira coerente, melhorando seu desempenho como solucionadores de problemas, criando e mantendo uma ilusão de vida para os agentes interativos e contribuindo para o aperfeiçoamento dos sistemas multiagentes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Por várias décadas os computadores têm sido utilizados no processo educacional e nem sempre da forma correta. E existe uma forma correta? Não existe consenso, são muitas as tentativas e experiências com inúmeros resultados positivos e negativos. Sabe-se de antemão que um dos fatores que levam ao fracasso alguns ensaios é a mera transposição do material didático tradicional para o meio informatizado, sem alterações na metodologia nem na postura do professor e do aluno. A questão é como a tecnologia pode ser utilizada para favorecer uma Aprendizagem Significativa. Para possibilitar esta pesquisa foi desenvolvido o Laboratório Virtual ASTERIX, utilizado na disciplina de Redes de Computadores do Curso de Ciências da Computação/UFSM. Esse trabalho apresenta os resultados da utilização do laboratório virtual ASTERIX, a metodologia de utilização dos recursos tecnológicos envolvidos (realidade virtual, inteligência artificial e animações/simulações) e avaliação da utilização desse laboratório virtual. A teoria educacional que fundamentou a criação e a utilização do laboratório virtual foi a Aprendizagem Significativa de D. Ausubel e D. Jonassen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A utilização da abordagem de agentes, nas mais diversas áreas de aplicações, mostra o interesse nas pesquisas sobre sistemas multiagentes. Este interesse surgiu da necessidade de aplicar novas técnicas e conceitos para a construção de sistemas e para auxiliar no seu desenvolvimento. Neste sentido, os agentes satisfazem às expectativas, não sendo apenas utilizados para a solução de problemas acadêmicos, mas também de sistemas reais. Na ciência da computação, a inteligência artificial distribuída está profundamente relacionada com o problema de coordenação. O objetivo é projetar mecanismos de coordenação para grupos de agentes artificiais. Várias características envolvem a atuação de agentes em um ambiente multiagente, como os mecanismos de cooperação, coordenação, comunicação, organização, entre outros. Este trabalho apresenta um estudo sobre coordenação multiagente, enfatizando a sua avaliação. O objetivo é apresentar uma proposta de avaliação, com um conjunto de critérios definidos para serem aplicados em modelos de coordenação. Inicialmente, é apresentado um estudo sobre coordenação de agentes. A seguir, são abordados vários modelos de coordenação encontrados na literatura da área. A parte principal do trabalho corresponde à definição de critérios para avaliação da coordenação, a serem utilizados em duas etapas: uma análise do problema, com vistas à escolha de um modelo de coordenação a ser empregado em uma determinada aplicação, e uma avaliação a posteriori, baseada nos critérios propostos para avaliar o comportamento de um sistema coordenado após o uso de um modelo de coordenação específico.Para exemplificar a aplicação dos critérios, dois estudos de caso são apresentados e foram utilizados para os experimentos: um referente ao domínio da Robocup, utilizando o Time UFRGS e, outro, referente ao gerenciamento de agendas distribuídas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho é apresentar um modelo eficiente de representação de conhecimento que é construído a partir de relações de causa e efeito entre percepções e ações. Assume-se que é possível perceber o ambiente, é necessário fazer decisões mediante incerteza, é possível perceber a realimentação (feedback) referente ao sucesso ou fracasso das ações escolhidas, e é possível aprender com a experiência. Nós descrevemos uma arquitetura que integra o processo de percepção do ambiente, detecção de contexto, tomada de decisão e aprendizagem, visando obter a sinergia necessária para lidar com as dificuldades relacionadas. Além da descrição da arquitetura, é apresentada de forma sucinta uma metodologia chamada Computação Contextual, composta por duas fases principais: Definição e Operação. A fase de Definição envolve o projeto e modelagem de: i) Os subespaços de conhecimento conceitual e canônico; e ii) As regras de crescimento dinâmico. A fase de Operação complementa (isto é, estende e adapta) as definições iniciais através da aprendizagem feita pela interação com o ambiente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Propõe um modelo de sistema especialista para análise de crédito, considerando a visão tradicional de avaliação de empresas aliada à abordagem inovadora de planejamento estratégico. Identifica desenvolvimentos recentes da Inteligência Artificial para a área de crédito das instituições financeiras. Descreve os principais conceitos e aplicações de Sistemas Especialistas e utiliza uma- metodologia mista para o desenvolvimento

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os sistemas baseados em conhecimento estão conquistando espaço entre as tecnologias de informação à medida que o hardware se desenvolve. No ambiente de acirrada competitividade presente nas empresas, esta tecnologia vem apoiá-Ias estrategicamente na agilização, principalmente, do processo decisório e na solução de diversos problemas considerados complexos. Este estudo faz uma investigação das aplicações potenciais da tecnologia de sistemas baseados em conhecimento - ou sistemas .especialistas, como comumente conhecidos -, examinando também as tendências da tecnologia e os impactos e implicações organizacionais provocados quando de sua implementação nas empresas. Um estudo exploratório em empresas brasileiras é acrescido ao perfil de uso e tendências dos sistemas baseados em conhecimento no âmbito nacional

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O atual ambiente de negócios crescentemente competitivo e turbulento requer das organizações modernas conhecimento profundo sobre as necessidades dos clientes e uma percepção de oportunidades e arrojo não triviais. Neste contexto, a transformação de dados em informações oportunas e precisas é fundamental para subsidiar a gestão. O Planejamento Estratégico Empresarial (PEE) e da Tecnologia da Informação (PETI) vêm modernamente sendo construídos para, de forma alinhada, atender o anseio maior da empresa, qual seja, maximizar seu valor a longo prazo. Este trabalho descreve sucintamente algumas visões sobre estratégia corporativa, sobre a necessidade de alinhamento desta estratégia com a TI e analisa o caso de implementação de um Sistema de Apoio à Decisão pioneiramente desenvolvido e implementado num grande Centro de Diagnósticos Médicos localizado na cidade de São Paulo. A análise do caso está fundamentada na literatura e nas vivências profissionais do pesquisador e fundamenta-se em quatro grandes grupos de fatores: tecnologia da informação, sistemas de inteligência artificial e do conhecimento, recursos humanos e contexto organizacional. A conclusão reitera a importância do alinhamento estratégico e ilustra os resultados positivos que dele se pode esperar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A popularização da Internet e o crescimento da educação à distância tornaram possível a criação de softwares e cursos à distância, disponíveis na WWW. Atualmente, a Inteligência Artificial (IA) vem sendo utilizada para aumentar a capacidade de ambientes de educação à distância, diminuindo a desistência pela falta de estímulos externos e de interação entre colegas e professores. Este trabalho encontra-se inserido no ambiente colaborativo suportado por computador, definido no projeto “Uma Proposta de Modelo Computacional de Aprendizagem à Distância Baseada na Concepção Sócio-Interacionista de Vygotsky” chamado MACES (Multiagent Architecture for an Collaborative Educational System). Sua principal proposta, como parte do projeto do grupo, é desenvolver e implementar a interface animada do personagem para os agentes pedagógicos animados Colaborativo e Mediador que operam no ambiente de aprendizado colaborativo proposto pelo grupo. O personagem desenvolvido chama-se PAT (Pedagogical and Affective Tutor). A interface do personagem foi desenvolvida em Java, JavaScript e usa o Microsoft Agent para a movimentação. O Resin 2.1.6 (semelhante ao Tomcat que também foi usado de teste) é o compilador de servlet usado na execução de Java Servlet’s e tecnologias jsp – que monta páginas HTML dinamicamente. Esta montagem é feita no servidor e enviada para o browser do usuário. Para definir a aparência do personagem foram feitas entrevistas com pedagogas, psicólogas, psicopedagogas e idéias tiradas de entrevistas informais com profissionais que trabalham com desenho industrial, propaganda, cartoon e desenho animado. A PAT faz parte da interface do MACES e promove a comunicação entre esse ambiente e o usuário. Portanto, acredita-se que a PAT e os recursos da Inteligência artificial poderão aumentar a capacidade de ambientes de educação à distância, tornando-os mais agradáveis, assim como diminuir a desistência pela falta de estímulos externos e de interação com colegas e professores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho investiga a relação entre aprendizado e dinâmica em sistemas complexos multiagentes. Fazemos isso através de estudos experimentais em um cenário de racionalidade limitada que situa-se na interesecção entre Inteligência Artificial, Economia e Física Estatística, conhecido como “Minority Game”. Apresentamos resultados experimentais sobre o jogo focando o estudo do cenário sob uma perspectiva de Aprendizado de Máquina. Introduzimos um novo algoritmo de aprendizado para os agentes no jogo, que chamamos de aprendizado criativo, e mostramos que este algoritmo induz uma distribuição mais eficiente de recursos entre os agentes. Este aumento de eficiência mostra-se resultante de uma busca irrestrita no espaço de estratégias que permitem uma maximização mais eficiente das distâncias entre estratégias. Analisamos então os efeitos dos parâmetros deste algoritmo no desempenho de um agente, comparando os resultados com o algoritmo tradicional de aprendizado e mostramos que o algoritmo proposto é mais eficiente que o tradicional na maioria das situações. Finalmente, investigamos como o tamanho de memória afeta o desempenho de agentes utilizando ambos algoritmos e concluímos que agentes individuais com tamanhos de memória maiores apenas obtém um aumento no desempenho se o sistema se encontrar em uma região ineficiente, enquanto que nas demais fases tais aumentos são irrelevantes - e mesmo danosos - à performance desses agentes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O gerenciamento de redes exige dos administradores a disponibilidade de uma grande quantidade de informações sobre os seus equipamentos, as tecnologias envolvidas e os problemas associados a elas. Nesse cenário, administradores de redes devem, cada vez mais, aprofundar o seu conhecimento através de constante treinamento, até que estejam aptos a administrar uma rede de maneira mais eficiente e confiável. Alguns estudos têm sido feitos buscando integrar tecnologias de Inteligência Artificial na área de gerenciamento de redes. Abordagens utilizando sistemas multiagentes, agentes de interface e sistemas especialistas já foram utilizadas com o objetivo de facilitar a tarefa de gerenciamento de rede aos olhos do usuário. Os chatterbots representam um grande potencial para a tarefa de treinamento e gerenciamento de redes já que utilizam linguagem natural e são capazes de ser facilmente integrados em ambientes mais complexos. O principal objetivo deste trabalho é investigar o uso de chatterbots como uma ferramenta de gerenciamento utilizada por administradores menos treinados. O trabalho envolveu a adaptação do chatterbot ALICE para permitir o treinamento e a gerência de redes através da inclusão de módulos que permitem a monitoração de equipamentos de uma rede (através do protocolo SNMP) e módulos que permitam consultar e armazenar histórico de informações da mesma. Desta forma, a grande contribuição da arquitetura proposta é a de prover uma comunicação mais efetiva entre o administrador menos experiente e a rede, através do chatterbot assistente, que recebe consultas em linguagem natural, interpreta os dados coletados e expõe os conceitos envolvidos no processo de gerenciamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho analisa diferentes modelos de representação temporal usados em arquiteturas conexionistas e propõe o uso de um novo modelo neural, chamado Neurônio Diferenciador-Integrador (NDI) para aplicação com processamento de sinais temporais. O NDI pode ser interpretado como filtro digital. Seu funcionamento exige poucos recursos computacionais e pode ser de grande valia em problemas onde a solução ideal depende de uma representação temporal instantânea, facilidade de implementação, modularidade e eliminação de ruído. Após a definição do modelo, o mesmo é sujeito a alguns experimentos teóricos utilizado em conjunto com arquiteturas conexionistas clássicas para resolver problemas que envolvem o tempo, como previsão de séries temporais, controle dinâmico e segmentação de seqüências espaço-temporais. Como conclusão, o modelo neural apresenta grande potencialidade principalmente na robótica, onde é necessário tratar os sinais sensoriais ruidosos do robô de forma rápida e econômica.