947 resultados para generated tiny virtual machines


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES] Este proyecto tuvo una continuación en 2008, cuando se documentó la muralla interior del castillo. Este trabajo también está disponible en este repositorio. Asimismo, algunos artículos y proyectos fin de carrera hacen referencia a los datos capturados en este proyecto. En concreto, los registros relacionados son los siguientes:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 mu m). In the case of surface finish, the absolute error is well below R-a 1 mu m (average value 0.32 mu m). The present approach can be easily generalized to other grinding operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine protease cathepsin S (CatS) is involved in the pathogenesis of autoimmune disorders, atherosclerosis, and obesity. Therefore, it represents a promising pharmacological target for drug development. We generated ligand-based and structure-based pharmacophore models for noncovalent and covalent CatS inhibitors to perform virtual high-throughput screening of chemical databases in order to discover novel scaffolds for CatS inhibitors. An in vitro evaluation of the resulting 15 structures revealed seven CatS inhibitors with kinetic constants in the low micromolar range. These compounds can be subjected to further chemical modifications to obtain drugs for the treatment of autoimmune disorders and atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Modern business practices in engineering are increasingly turning to post manufacture service provision in an attempt to generate additional revenue streams and ensure commercial sustainability. Maintainability has always been a consideration during the design process but in the past it has been generally considered to be of tertiary importance behind manufacturability and primary product function in terms of design priorities. The need to draw whole life considerations into concurrent engineering (CE) practice has encouraged companies to address issues such as maintenance, earlier in the design process giving equal importance to all aspects of the product lifecycle. The consideration of design for maintainability (DFM) early in the design process has the potential to significantly reduce maintenance costs, and improve overall running efficiencies as well as safety levels. However a lack of simulation tools still hinders the adaptation of CE to include practical elements of design and therefore further research is required to develop methods by which ‘hands on’ activities such as maintenance can be fully assessed and optimised as concepts develop. Virtual Reality (VR) has the potential to address this issue but the application of these traditionally high cost systems can require complex infrastructure and their use has typically focused on aesthetic aspects of mature designs. This paper examines the application of cost effective VR technology to the rapid assessment of aircraft interior inspection during conceptual design. It focuses on the integration of VR hardware with a typical desktop engineering system and examines the challenges with data transfer, graphics quality and the development of practical user functions within the VR environment. Conclusions drawn to date indicate that the system has the potential to improve maintenance planning through the provision of a usable environment for inspection which is available as soon as preliminary structural models are generated as part of the conceptual design process. Challenges still exist in the efficient transfer of data between the CAD and VR environments as well as the quantification of any benefits that result from the proposed approach. The result of this research will help to improve product maintainability, reduce product development cycle times and lower maintenance costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly semiconductor manufacturers are exploring opportunities for virtual metrology (VM) enabled process monitoring and control as a means of reducing non-value added metrology and achieving ever more demanding wafer fabrication tolerances. However, developing robust, reliable and interpretable VM models can be very challenging due to the highly correlated input space often associated with the underpinning data sets. A particularly pertinent example is etch rate prediction of plasma etch processes from multichannel optical emission spectroscopy data. This paper proposes a novel input-clustering based forward stepwise regression methodology for VM model building in such highly correlated input spaces. Max Separation Clustering (MSC) is employed as a pre-processing step to identify a reduced srt of well-conditioned, representative variables that can then be used as inputs to state-of-the-art model building techniques such as Forward Selection Regression (FSR), Ridge regression, LASSO and Forward Selection Ridge Regression (FCRR). The methodology is validated on a benchmark semiconductor plasma etch dataset and the results obtained are compared with those achieved when the state-of-art approaches are applied directly to the data without the MSC pre-processing step. Significant performance improvements are observed when MSC is combined with FSR (13%) and FSRR (8.5%), but not with Ridge Regression (-1%) or LASSO (-32%). The optimal VM results are obtained using the MSC-FSR and MSC-FSRR generated models. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. The prediction models for VM can be from a large variety of linear and nonlinear regression methods and the selection of a proper regression method for a specific VM problem is not straightforward, especially when the candidate predictor set is of high dimension, correlated and noisy. Using process data from a benchmark semiconductor manufacturing process, this paper evaluates the performance of four typical regression methods for VM: multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), neural networks (NN) and Gaussian process regression (GPR). It is observed that GPR performs the best among the four methods and that, remarkably, the performance of linear regression approaches that of GPR as the subset of selected input variables is increased. The observed competitiveness of high-dimensional linear regression models, which does not hold true in general, is explained in the context of extreme learning machines and functional link neural networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A evolução tecnológica tem sido de tal ordem que a realidade virtual deixou de ser um mero conceito que apenas é possível de implementar recorrendo a máquinas com um poder de processamento muito elevado. Tendo em conta o potencial da realidade virtual e a não existência de boas práticas na criação da interface de um sistema que use este conceito, pretende-se, nesta dissertação, fazer um estudo sobre como pode ser analisada e estruturada a componente de interação através da estratificação de níveis de interação para as diferentes operações do sistema pretendido. Por forma a ser possível, posteriormente, comparar cada um dos sistemas relativamente à interação, foram estipulados um conjunto de ações/operações que teriam de ser passíveis de executar em cada um, bem como, um tema base, uma aplicação de realidade virtual de simulação de espaço aplicada ao sector mobiliário. Depois de implementados os sistemas, estes foram apresentados a um conjunto de pessoas que foram inquiridas sobre os mesmos, por forma a avaliar a interação com cada um. Através dos resultados obtidos da avaliação dos inquéritos entregues, foi possível concluir que, para uma grande parte das operações implementadas, existe uma preferência para que a realização da operação seja o mais similar à sua execução num contexto real.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering Alan Turing’s challenge in «Computing Machinery and Intelligence» (1950) – can machines play the «imitation game»? – it is proposed that the requirements of the Turing test are already implicitly being used for checking the credibility of virtual characters and avatars. Like characters, Avatars aim to visually express emotions (the exterior signs of the existence of feeling) and its creators have to resort to emotion codes. Traditional arts have profusely contributed for this field and, together with the science of anatomy, shaped the grounds for current Facial Action Coding System (FACS) and their databases. However, FACS researchers have to improve their «instruction tables» so that the machines will be able, in a near future, to be programmed to carry out the operation of recognizing human expressions (face and body) and classify them adequately. For the moment, the reproductions have to resort to the copy of real life expressions, and the presente smile of avatars comes from mirroring their human users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’observation de l’exécution d’applications JavaScript est habituellement réalisée en instrumentant une machine virtuelle (MV) industrielle ou en effectuant une traduction source-à-source ad hoc et complexe. Ce mémoire présente une alternative basée sur la superposition de machines virtuelles. Notre approche consiste à faire une traduction source-à-source d’un programme pendant son exécution pour exposer ses opérations de bas niveau au travers d’un modèle objet flexible. Ces opérations de bas niveau peuvent ensuite être redéfinies pendant l’exécution pour pouvoir en faire l’observation. Pour limiter la pénalité en performance introduite, notre approche exploite les opérations rapides originales de la MV sous-jacente, lorsque cela est possible, et applique les techniques de compilation à-la-volée dans la MV superposée. Notre implémentation, Photon, est en moyenne 19% plus rapide qu’un interprète moderne, et entre 19× et 56× plus lente en moyenne que les compilateurs à-la-volée utilisés dans les navigateurs web populaires. Ce mémoire montre donc que la superposition de machines virtuelles est une technique alternative compétitive à la modification d’un interprète moderne pour JavaScript lorsqu’appliqué à l’observation à l’exécution des opérations sur les objets et des appels de fonction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.