986 resultados para dental implant-abutment design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This in vitro study compared the dimensional accuracy of stone index (I) and three impression techniques: tapered impression copings (T), squared impression copings (S) and modified squared impression copings (MS) for implant-supported prostheses. Methods: A master cast, with four parallel implant abutment analogs and a passive framework, were fabricated. Vinyl polysiloxane impression material was used for all impressions with two metal stock trays (open and closed tray). Four groups (I, T, S and MS) were tested (n = 5). A metallic framework was seated on each of the casts, one abutment screw was tightened, and the gap between the analog of implant and the framework was measured with a stereomicroscope. The groups' measurements (80 gap values) were analyzed using software (LeicaQWin - Leica Imaging Systems Ltd.) that received the images of a video camera coupled to a Leica stereomicroscope at 100× magnification. The results were statistically analyzed with Kruskal-Wallis One Way ANOVA on Ranks test followed by Dunn's Method, 0.05. Results: The mean values of abutment/framework interface gaps were: Master Cast = 32 μm (SD 2); Group I = 45 μm (SD 3); Group T = 78 μm (SD 25); Group S = 134 μm (SD 30); Group MS = 143 μm (SD 27). No significant difference was detected among Index and Master Cast (P = .05). Conclusion: Under the limitations of this study, it could be suggested that a more accurate working cast is possible using tapered impression copings techniques and stone index. © 2013 Japan Prosthodontic Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution with different implant systems through photoelasticity. Five models were fabricated with photoelastic resin PL-2. Each model was composed of a block of photoelastic resin (10 x 40 x 45 mm) with an implant and a healing abutment: model 1, internal hexagon implant (4.0 X 10 mm; Conect AR, Conexao, Sao Paulo, Brazil); model 2, Morse taper/internal octagon implant (4.1 x 10 mm; Standard, Straumann ITI, Andover, Mass); model 3, Morse taper implant (4.0 x 10 mm; AR Morse, Conexao); model 4, locking taper implant (4.0 x 11 mm; Bicon, Boston, Mass); model 5, external hexagon implant (4.0 x 10 mm; Master Screw, Conexao). Axial and oblique load (45) of 150 N were applied by a universal testing machine (EMIC-DL 3000), and a circular polariscope was used to visualize the stress. The results were photographed and analyzed qualitatively using Adobe Photoshop software. For the axial load, the greatest stress concentration was exhibited in the cervical and apical thirds. However, the highest number of isochromatic fringes was observed in the implant apex and in the cervical adjacent to the load direction in all models for the oblique load. Model 2 (Morse taper, internal octagon, Straumann ITI) presented the lowest stress concentration, while model 5 (external hexagon, Master Screw, Conexao) exhibited the greatest stress. It was concluded that Morse taper implants presented a more favorable stress distribution among the test groups. The external hexagon implant showed the highest stress concentration. Oblique load generated the highest stress in all models analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper was to present a rehabilitation of a patient with a dynamic universal castable long abutment (UCLA) for a single tilted implant in the anterior maxillary area. A 57-year-old male patient attended the dentistry college clinic complaining of a vertical fracture of a residual root of the dental element 22. The tooth extraction was indicated for the implant installation. Due to the socket buccal wall thickness, the implant was installed with an inclination to the palate. It was done in a two-stage surgical protocol, and an external hexagon implant (3.75×11.5mm) was placed. After a six-month healing period to correct the implant position, a dynamic UCLA was set in place, rectifying the implant emergence profile at 20°. The ceramic structure fitting was performed and, after the patient's consent, the prosthesis was finalized and installed. After a follow-up period of twenty months, no complications were observed. The installation of tilted implants with a dynamic UCLA may be a viable option, faster and less invasive than bone grafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of switching platform is the use of an implant by platform wider than the abutment. Recently, researches have shown that this type of dental implant design tends to offer a higher preservation of crestal bone when compared to the traditional pattern of bone loss. The present study aims to perform a critical review on the switching platform concept establishing possible advantages of the technique. A search was performed on Medline/Pubmed about the topic “dental implant” and “platform switching”, and after applying inclusion criteria 40 studies were selected. The literature on longevity present prospective studies that show less bone loss, studies in biomechanics exhibit better or similar stress distribution around the bone crest, however, is not yet defined the role of the biological width. Thus, studies of longevity, and randomized prospective studies are of a great relevance to be performed in order to confirm the benefits of this technique and to establish a protocol indication. It is possible, based on this literature review, to conclude that longitudinal and randomized studies show that the platform switching implants have longevity and less bone loss. Biomechanically, the technique is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This prospective randomized matched-pair controlled trial aimed to evaluate marginal bone levels and soft tissue alterations at implants restored according to the platform-switching concept with a new inward-inclined platform and compare them with external-hexagon implants. Materials and Methods: Traditional external-hexagon (control group) implants and inward-inclined platform implants (test group), all with the same implant body geometry and 13 mm in length, were inserted in a standardized manner in the posterior maxillae of 40 patients. Radiographic bone levels were measured by two independent examiners after 6, 12, and 18 months of prosthetic loading. Buccal soft tissue height was measured at the time of abutment connection and 18 months later. Results: After 18 months of loading, all 80 implants were clinically osseointegrated in the 40 participating patients. Radiographic evaluation showed mean bone losses of 0.5 +/- 0.1 mm (range, 0.3 to 0.7 mm) and 1.6 +/- 0.3 mm (range, 1.1 to 2.2 mm) for test and control implants, respectively. Soft tissue height showed a significant mean decrease of 2.4 mm in the control group, compared to 0.6 mm around the test implants. Conclusions: After 18 months, significantly greater bone loss was observed at implants restored according to the conventional external-hexagon protocol compared to the platform-switching concept. In addition, decreased soft tissue height was associated with the external-hexagon implants versus the platform-switched implants. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:927-934.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Primary and secondary stabilities of immediately loaded mandibular implants restored with fixed prostheses (FP) using rigid or semirigid splinting systems were clinically and radiographically evaluated. Methods: Fifteen edentulous patients were rehabilitated using hybrid FP; each had 5 implants placed between the mental foramens. Two groups were randomly divided: group 1-FP with the conventional rigid bar splinting the implants and group 2-semi-rigid cantilever extension system with titanium bars placed in the 2 distal abutment cylinders. Primary stability was evaluated using resonance frequency analysis after installation of the implant abutments. The measurements were made at 3 times: T0, at baseline; T1, 4 months after implant placement; and T2, 8 months after implant placement. Presence of mobility and inflammation in the implant surrounding regions were checked. Stability data were submitted to statistical analysis for comparison between groups (P, 0.05). Results: Implant survival rate for the implants was of 100% in both groups. No significant differences in the mean implant stability quotient values were found for both groups from baseline and after the 8-month follow-up. Conclusion: The immediate loading of the implants was satisfactory, and both splinting conditions (rigid and semi-rigid) can be successfully used for the restoration of edentulous mandibles. (Implant Dent 2012;21:486-490)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To test in vitro the mechanical resistance, rotational misfit and failure mode of three original implant-abutment connections and to compare them to two connections between non-original abutments connected to one of the original implants. MATERIAL AND METHODS: Three different implants with small diameters (3.3 mm for Straumann Roxolid, 3.5 mm for Nobel Biocare Replace and Astra Tech Osseospeed TX) were connected with individualized titanium abutments. Twelve implants from each system were connected to their original abutments (Straumann CARES, Nobel Biocare Procera, Astra Tech Atlantis). Twenty-four Roxolid implants were connected with non-original abutments using CAD/CAM procedures from the other two manufacturers (12 Nobel Biocare Procera and 12 Astra Tech Atlantis). For the critical bending test, a Zwick/Roell 1475 machine and the Xpert Zwick/Roell software were used. RESULTS: The rotational misfit varied when comparing the different interfaces. The use of non-original grade V titanium abutments on Roxolid implants increased the force needed for deformation. The fracture mode was different with one of the original connections. CONCLUSIONS: Non-original abutments differ in design of the connecting surfaces and material and demonstrate higher rotational misfit. These differences may result in unexpected failure modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A satisfactory clinical outcome in dental implant treatment relies on primary stability for immediate load bearing. While the geometric design of an implant contributes to mechanical stability, the nature of the implant surface itself is also critically important. Biomechanical and microcomputerized tomographic evaluation of implant osseointegration was performed to compare alternative structural, chemical and biochemical, and/or pharmaceutical surface treatments applied to an identical established implant design. Materials and Methods: Dental implants with the same geometry but with 6 different surface treatments were tested in vivo in a sheep model (pelvis). Peri-implant bone density and removal torque were compared at 2, 4, and 8 weeks after implantation. Implant surfaces tested were: sandblasted and acid-etched titanium (Ti), sandblasted and etched zirconia, Ti coated with calcium phosphate (CaP), Ti modified via anodic plasma-chemical treatment (APC), bisphosphonate-coated Ti (Ti + Bisphos), and Ti coated with collagen containing chondroitin sulfate (CS). Results: All dental implants were well integrated at the time of sacrifice. There were no significant differences observed in peri-implant bone density between implant groups. After 8 weeks of healing, removal torque values for Ti, Ti + CaP, Ti + Bisphos, and Ti + collagen + CS were significantly higher than those for zirconia and Ti + APC. Conclusions: Whereas the sandblasted/acid-etched Ti implant can still be considered the reference standard surface for dental implants, functional surface modifications such as bisphosphonate or collagen coating seem to enhance early peri-implant bone formation and should be studied further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To systematically appraise the impact of mechanical/technical risk factors on implant-supported reconstructions. MATERIAL AND METHODS: A MEDLINE (PubMed) database search from 1966 to April 2008 was conducted. The search strategy was a combination of MeSH terms and the key words: design, dental implant(s), risk, prosthodontics, fixed prosthodontics, fixed partial denture(s), fixed dental prosthesis (FDP), fixed reconstruction(s), oral rehabilitation, bridge(s), removable partial denture(s), overdenture(s). Randomized controlled trials, controlled trials, and prospective and retrospective cohort studies with a mean follow-up of at least 4 years were included. The material evaluated in each study had to include cases with/without exposure to the risk factor. RESULTS: From 3,568 articles, 111 were selected for full text analysis. Of the 111 articles, 33 were included for data extraction after grouping the outcomes into 10 risk factors: type of retentive elements supporting overdentures, presence of cantilever extension(s), cemented versus screw-retained FDPs, angled/angulated abutments, bruxism, crown/implant ratio, length of the suprastructure, prosthetic materials, number of implants supporting an FDP, and history of mechanical/technical complications. CONCLUSIONS: The absence of a metal framework in overdentures, the presence of cantilever extension(s) > 15 mm and of bruxism, the length of the reconstruction, and a history of repeated complications were associated with increased mechanical/technical complications. The type of retention, the presence of angled abutments, the crown-implant ratio, and the number of implants supporting an FDP were not associated with increased mechanical/technical complications. None of the mechanical/technical risk factors had an impact on implant survival and success rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The aim of this case series was to introduce a complete digital workflow for the production of monolithic implant crowns. MATERIAL AND METHODS Six patients were treated with implant-supported crowns made of resin nano ceramic (RNC). Starting with an intraoral optical scan (IOS), and following a CAD/CAM process, the monolithic crowns were bonded either to a novel prefabricated titanium abutment base (group A) or to a CAD/CAM-generated individualized titanium abutment (group B) in premolar or molar sites on a soft tissue level dental implant. Economic analyses included clinical and laboratory steps. An esthetic evaluation was performed to compare the two abutment-crown combinations. RESULTS None of the digitally constructed RNC crowns required any clinical adaptation. Overall mean work time calculations revealed obvious differences for group A (65.3 min) compared with group B (86.5 min). Esthetic analysis demonstrated a more favorable outcome for the prefabricated bonding bases. CONCLUSIONS Prefabricated or individualized abutments on monolithic RNC crowns using CAD/CAM technology in a model-free workflow seem to provide a feasible and streamlined treatment approach for single-edentulous space rehabilitation in the posterior region. However, RNC as full-contour material has to be considered experimental, and further large-scale clinical investigations with long-term follow-up observation are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To systematically review the available literature on the influence of dental implant placement and loading protocols on peri-implant innervation. MATERIAL AND METHODS The database MEDLINE, Cochrane, EMBASE, Web of Science, LILACS, OpenGrey and hand searching were used to identify the studies published up to July 2013, with a populations, exposures and outcomes (PEO) search strategy using MeSH keywords, focusing on the question: Is there, and if so, what is the effect of time between tooth extraction and implant placement or implant loading on neural fibre content in the peri-implant hard and soft tissues? RESULTS Of 683 titles retrieved based on the standardized search strategy, only 10 articles fulfilled the inclusion criteria, five evaluating the innervation of peri-implant epithelium, five elucidating the sensory function in peri-implant bone. Three included studies were considered having a methodology of medium quality and the rest were at low quality. All those papers reported a sensory innervation around osseointegrated implants, either in the bone-implant interface or peri-implant epithelium, which expressed a particular innervation pattern. Compared to unloaded implants or extraction sites without implantation, a significant higher density of nerve fibres around loaded dental implants was confirmed. CONCLUSIONS To date, the published literature describes peri-implant innervation with a distinct pattern in hard and soft tissues. Implant loading seems to increase the density of nerve fibres in peri-implant tissues, with insufficient evidence to distinguish between the innervation patterns following immediate and delayed implant placement and loading protocols. Variability in study design and loading protocols across the literature and a high risk of bias in the studies included may contribute to this inconsistency, revealing the need for more uniformity in reporting, randomized controlled trials, longer observation periods and standardization of protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past few decades have brought many changes to the dental practice and the technology has become ready available. The result of a satisfactory rehabilitation treatment basically depends on the balance between biological and mechanical factors. The marginal adaptation of crowns and prosthetic structures is vital factor for long-term success. The development of CAD / CAM technology in the manufacture of dental prostheses revolutionized dentistry, this technology is capable of generating a virtual model from the direct digital scanning from the mouth, casts or impressions. It allows the planning and design of the structure in a computered software. The virtual projects are obtained with high precision and a significant reduction in clinical and laboratory time. Thus, the present study (Chapters 1, 2 and 3) computed microtomography was used to evaluate, different materials, different CAD/CAM systems, different ways of obtaining virtual model (with direct or indirect scanning), and in addition, also aims to evaluate the influence of cementing agent in the final adaptation of crowns and copings obtained by CAD / CAM. Furthermore, this study (Chapter 4, 5 and 6) also aims to evaluate significant differences in vertical and horizontal misfits in abutment-free frameworks on external hexagon implants (HE) using full castable UCLAs, castable UCLAs with cobalt-chromium pre-machined bases and obtained by CAD / CAM with CoCr or Zirconia by different scanning and milling systems. For this, the scanning electron microscopy and interferometry were used. It was concluded that the CAD / CAM technology is capable to produce restorations, copings and screw-retained implant-supported frameworks in different materials and systems offering satisfactory results of marginal accuracy, with significative reduction in clinical and laboratory time.