901 resultados para deformable mirror
Resumo:
We report an end-pumped and passive mode-locking all-solid-state laser. The laser consists of a Nd:GdVO4 crystal and a linear resonator with a semiconductor saturable absorber mirror that yield mode locking. We achieved stable continuous-wave mode locking with an 8-ps pulse duration at a 154-MHz repetition rate. The average output power was 600 mW with 4 W of pump power. To our knowledge this is the first report of the use of a Nd:GdVO4 crystal for mode locking with a semiconductor saturable absorber mirror. (C) 2003 Optical Society of America.
Resumo:
An ultra-compact silicon-on-insulator based photonic crystal corner mirror is designed and optimized. A sample is then successfully fabricated with extra losses 1.1 +/- 0.4dB for transverse-electronic (M) polarization for wavelength range of 1510-1630nm.
Resumo:
A novel type of interferometer, the moving-mirror-pair interferometer, is presented, and its principle and properties are studied. The new interferometer is built with three flat mirrors, which include two flat moving mirrors fixed as a single moving part by a rigid structure and one flat fixed mirror. The optical path difference (OPD) is obtained by the straight reciprocating motion of the double moving mirror, and the OPD value is four times the physical shift value of the double moving mirror. The tilt tolerance of the double moving mirror of the novel interferometer is systematically analyzed by means of modulation depth and phase error. Where the square aperture is concerned, the formulas of the tilt tolerance were derived. Due to the novel interferometer's large OPD value and low cost, it is very applicable to the high-spectral-resolution Fourier-transform spectrometers for any wavenumber region from the far infrared to the ultraviolet. (C) 2008 Optical Society of America.
Resumo:
We reported an efficient diode pumped Nd ! YVO, 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7. 5 W, 2. 81 W average output power was obtained during stable CW mode locking with a repetition rate of 111 MHz. The optical conversion efficiency was 37. 5% , and the slope efficiency was 39%. So far as we know, this is the highest optical-optical conversion efficiency with a SESAM at home.
Resumo:
Ultrashort pulses were generated in passively mode-locked Nd:YAG and Nd:GdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.
Resumo:
We report a diode end-pumped continuous wave (CW) passively mode-locked Nd:YVO4 laser with a homemade semiconductor saturable absorber mirror (SESAM). The maximum average output power is 5.3 W at the incident pump power of 17 W, which corresponds to an optical-optical conversion efficiency of 31.2% and slope efficiency of 34.7%. The corresponding optical spectrum has a 0.2-nm full width at half maximum (FWHM), and the pulse repetition rate is 83 MHz.
Resumo:
利用金属有机气相淀积方法生长了一种新型吸收体:高反射率半导体可饱和吸收镜.用这种吸收体兼作端镜,实现了1.044μm半导体端面泵浦Yb∶YAB激光器被动锁模,脉冲宽度为3.05ps,重复率为375MHz,输出功率为45mW.
Resumo:
The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20-μm-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5-μm-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.
Resumo:
Single photon Sagnac interferometry as a probe to macroscopic quantum mechanics is considered at the theoretical level. For a freely moving macroscopic quantum mirror susceptible to radiation pressure force inside a Sagnac interferometer, a careful analysis of the input-output relation reveals that the particle spectrum readout at the bright and dark ports encode information concerning the noncommutativity of position and momentum of the macroscopic mirror. A feasible experimental scheme to probe the commutation relation of a macroscopic quantum mirror is outlined to explore the possible frontier between classical and quantum regimes. In the Appendix, the case of Michelson interferometry as a feasible probe is also sketched.
Resumo:
Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.
Resumo:
Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei Se-67 and As-67, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g(9/2) orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p(3/2) and f(5/2) orbits to the g(9/2) orbit. The relation of the MED to deformation is discussed.
Resumo:
The mirror nuclei N-12 and B-12 are separated by the Radioactive Ion Beam Line in Lanzhou (RIBLL) at HIRFL from the breakup of 78.6 MeV/u N-14 on a Be target. The total reaction cross-sections of N-12 at 34.9 MeV/u and B-12 at 54.4 MeV/u on a Si target have been measured by using the transmission method. Assuming N-12 consists of a C-11 core plus one halo proton, the excitation function of N-12 and B-12 on a Si target and a C target were calculated with the Glauber model. It can fit the experimental data very well. The characteristic halo structure for N-12 was found with a large diffusion of the protons density distribution.
Resumo:
Cox, S.J. (2006) Calculations of the minimal perimeter for N deformable cells of equal area confined in a circle. Philosophical Magazine Letters. 86:569-578.
Resumo:
We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.