967 resultados para curves
Resumo:
We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet star radius ratio and inclination of the system, which were found to be R-p/R-star = 0.1664(-0.0018)(+0.0011) and i = 81.73(-0.04)(+0.13), respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi(2) = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T-c(0) = 2454632.62610 +/- 0.00006 HJD and P = 1.3061864 +/- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.
Resumo:
The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0-12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org.
Resumo:
We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i = 86.75+0.22-0.21°, the planet-star radius ratio to be Rp/R* = 0.1098+0.0010-0.0012 and the stellar radius to be R* = 0.834+0.018-0.026Rsolar, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 2454856.70118 +/- 0.00018 HJD and P = 2.899738 +/- 0.000007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M? in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits.
Resumo:
ABSTRACT:
Resumo:
Motivated by recent models involving off-centre ignition of Type Ia supernova explosions, we undertake three-dimensional time-dependent radiation transport simulations to investigate the range of bolometric light-curve properties that could be observed from supernovae in which there is a lop-sided distribution of the products from nuclear burning. We consider both a grid of artificial toy models which illustrate the conceivable range of effects and a recent three-dimensional hydrodynamical explosion model. We find that observationally significant viewing angle effects are likely to arise in such supernovae and that these may have important ramifications for the interpretation of the observed diversity of Type Ia supernova and the systematic uncertainties which relate to their use as standard candles in contemporary cosmology. © 2007 RAS.
Resumo:
Energy release from radioactive decays contributes significantly to supernova light curves. Previous works, which considered the energy deposited by ?-rays and positrons produced by Ni, Co, Ni, Co, Ti and Sc, have been quite successful in explaining the light curves of both core collapse and thermonuclear supernovae. We point out that Auger and internal conversion electrons, together with the associated X-ray cascade, constitute an additional heat source. When a supernova is transparent to ?-rays, these electrons can contribute significantly to light curves for reasonable nucleosynthetic yields. In particular, the electrons emitted in the decay of Co, which are largely due to internal conversion from a fortuitously low-lying 3/2 state in the daughter Fe, constitute an additional significant energy-deposition channel. We show that when the heating by these electrons is accounted for, a slow-down in the light curve of SN 1998bw is naturally obtained for typical hypernova nucleosynthetic yields. Additionally, we show that for generic Type Ia supernova yields, the Auger electrons emitted in the ground-state to ground-state electron capture decay of Fe exceed the energy released by the Ti decay chain for many years after the explosion. © 2009 RAS.
Resumo:
Large data sets of radiocarbon dates are becoming a more common feature of archaeological research. The sheer numbers of radiocarbon dates produced, however, raise issues of representation and interpretation. This paper presents a methodology which both reduces the visible impact of dating fluctuations, but also takes into consideration the influence of the underlying radiocarbon calibration curve. By doing so, it may be possible to distinguish between periods of human activity in early medieval Ireland and the statistical tails produced by radiocarbon calibration.
Resumo:
The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from C measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model (RWM) used to generate IntCal09 and Marine09, which has been revised to account for additional uncertainties and error structures. The new curves were ratified at the 21st International Radiocarbon conference in July 2012 and are available as Supplemental Material at www.radiocarbon.org. The database can be accessed at http://intcal.qub.ac.uk/intcal13/.
Resumo:
We present a sample of normal Type Ia supernovae (SNe Ia) from the Nearby Supernova Factory data set with spectrophotometry at sufficiently late phases to estimate the ejected mass using the bolometric light curve.Wemeasure Ni masses from the peak bolometric luminosity, then compare the luminosity in the Co-decay tail to the expected rate of radioactive energy release from ejecta of a given mass. We infer the ejected mass in a Bayesian context using a semi-analytic model of the ejecta, incorporating constraints from contemporary numerical models as priors on the density structure and distribution of Ni throughout the ejecta. We find a strong correlation between ejected mass and light-curve decline rate, and consequently Ni mass, with ejected masses in our data ranging from 0.9 to 1.4 M. Most fast-declining (SALT2 x <-1) normal SNe Ia have significantly sub-Chandrasekhar ejected masses in our fiducial analysis.