947 resultados para curved-layer fused deposition modelling (FDM)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Essery, RLH, RJ Granger and JW Pomeroy, 2006. Boundary layer growth and advection of heat over snow and soil patches: Modelling and parametrization. Hydrological Processes, 20, 953 - 967.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work concerns the atomic layer deposition (ALD) of copper. ALD is a technique that allows conformal coating of difficult topographies such as narrow trenches and holes or even shadowed regions. However, the deposition of pure metals has so far been less successful than the deposition of oxides except for a few exceptions. Challenges include difficulties associated with the reduction of the metal centre of the precursor at reasonable temperatures and the tendency of metals to agglomerate during the growth process. Cu is a metal of special technical interest as it is widely used for interconnects on CMOS devices. These interconnects are usually fabricated by electroplating, which requires the deposition of thin Cu seed layers onto the trenches and vias. Here, ALD is regarded as potential candidate for replacing the current PVD technique, which is expected to reach its limitations as the critical dimensions continue to shrink. This work is separated into two parts. In the first part, a laboratory-scale ALD reactor was constructed and used for the thermal ALD of Cu. In the second part, the potentials of the application of Cu ALD on industry scale fabrication were examined in a joint project with Applied Materials and Intel. Within this project precursors developed by industrial partners were evaluated on a 300 mm Applied Materials metal-ALD chamber modified with a direct RF-plasma source. A feature that makes ALD a popular technique among researchers is the possibility to produce high- level thin film coatings for micro-electronics and nano-technology with relatively simple laboratory- scale reactors. The advanced materials and surfaces group (AMSG) at Tyndall National Institute operates a range of home-built ALD reactors. In order to carry out Cu ALD experiments, modifications to the normal reactor design had to be made. For example a carrier gas mechanism was necessary to facilitate the transport of the low-volatile Cu precursors. Precursors evaluated included the readily available Cu(II)-diketonates Cu-bis(acetylacetonate), Cu-bis(2,2,6,6-tetramethyl-hepta-3,5-dionate) and Cu-bis(1,1,1,5,5,5-hexafluoacetylacetonate) as well as the Cu-ketoiminate Cu-bis(4N-ethylamino- pent-3-en-2-onate), which is also known under the trade name AbaCus (Air Liquide), and the Cu(I)- silylamide 1,3-diisopropyl-imidazolin-2-ylidene Cu(I) hexamethyldisilazide ([NHC]Cu(hmds)), which was developed at Carleton University Ottawa. Forming gas (10 % H2 in Ar) was used as reducing agent except in early experiments where formalin was used. With all precursors an extreme surface selectivity of the deposition process was observed and significant growth was only achieved on platinum-group metals. Improvements in the Cu deposition process were obtained with [NHC]Cu(hmds) compared with the Cu(II) complexes. A possible reason is the reduced oxidation state of the metal centre. Continuous Cu films were obtained on Pd and indications for saturated growth with a rate of about 0.4 Å/cycle were found for deposition at 220 °C. Deposits obtained on Ru consisted of separated islands. Although no continuous films could be obtained in this work the relatively high density of Cu islands obtained was a clear improvement as compared to the deposits grown with Cu(II) complexes. When ultra-thin Pd films were used as substrates, island growth was also observed. A likely reason for this extreme difference to the Cu films obtained on thicker Pd films is the lack of stress compensation within the thin films. The most likely source of stress compensation in the thicker Pd films is the formation of a graded interlayer between Pd and Cu by inter-diffusion. To obtain continuous Cu films on more materials, reduction of the growth temperature was required. This was achieved in the plasma assisted ALD experiments discussed in the second part of this work. The precursors evaluated included the AbaCus compound and CTA-1, an aliphatic Cu-bis(aminoalkoxide), which was supplied by Adeka Corp.. Depositions could be carried out at very low temperatures (60 °C Abacus, 30 °C CTA-1). Metallic Cu could be obtained on all substrate materials investigated, but the shape of the deposits varied significantly between the substrate materials. On most materials (Si, TaN, Al2O3, CDO) Cu grew in isolated nearly spherical islands even at temperatures as low as 30 °C. It was observed that the reason for the island formation is the coalescence of the initial islands to larger, spherical islands instead of forming a continuous film. On the other hand, the formation of nearly two-dimensional islands was observed on Ru. These islands grew together forming a conductive film after a reasonably small number of cycles. The resulting Cu films were of excellent crystal quality and had good electrical properties; e.g. a resistivity of 2.39 µΩ cm was measured for a 47 nm thick film. Moreover, conformal coating of narrow trenches (1 µm deep 100/1 aspect ratio) was demonstrated showing the feasibility of the ALD process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wonder of the last century has been the rapid development in technology. One of the sectors that it has touched immensely is the electronic industry. There has been exponential development in the field and scientists are pushing new horizons. There is an increased dependence in technology for every individual from different strata in the society. Atomic Layer Deposition (ALD) is a unique technique for growing thin films. It is widely used in the semiconductor industry. Films as thin as few nanometers can be deposited using this technique. Although this process has been explored for a variety of oxides, sulphides and nitrides, a proper method for deposition of many metals is missing. Metals are often used in the semiconductor industry and hence are of significant importance. A deficiency in understanding the basic chemistry at the nanoscale for possible reactions has delayed the improvement in metal ALD. In this thesis, we study the intrinsic chemistry involved for Cu ALD. This work reports computational study using Density Functional Theory as implemented in TURBOMOLE program. Both the gas phase and surface reactions are studied in most of the cases. The merits and demerits of a promising transmetallation reaction have been evaluated at the beginning of the study. Further improvements in the structure of precursors and coreagent have been proposed. This has led to the proposal of metallocenes as co-reagents and Cu(I) carbene compounds as new set of precursors. A three step process for Cu ALD that generates ligand free Cu layer after every ALD pulse has also been studied. Although the chemistry has been studied under the umbrella of Cu ALD the basic principles hold true for ALD of other metals (e.g. Co, Ni, Fe ) and also for other branches of science like thin film deposition other than ALD, electrochemical reactions, etc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4–H2O and HfCl4–H2O and growth of Al2O3 from Al(CH3)3–H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this ‘cooperative’ mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using quantum chemical calculations, we investigate surface reactions of copper precursors and diethylzinc as the reducing agent for effective Atomic Layer Deposition (ALD) of Cu. The adsorption of various commonly used Cu(II) precursors is explored. The precursors vary in the electronegativity and conjugation of the ligands and flexibility of the whole molecule. Our study shows that the overall stereochemistry of the precursor governs the adsorption onto its surface. Formation of different Cu(II)/Cu(I)/Cu(0) intermediate complexes from the respective Cu(II) compounds on the surface is also explored. The surface model is a (111) facet of a Cu55 cluster. Cu(I) compounds are found to cover the surface after the precursor pulse, irrespective of the precursor chosen. We provide new information about the surface chemistry of Cu(II) versus Cu(I) compounds. A pair of CuEt intermediates or the dimer Cu2Et2 reacts in order to deposit a new Cu atom and release gaseous butane. In this reaction, two electrons from the Et anions are donated to copper for reduction to metallic form. This indicates that a ligand exchange between the Cu and Zn is important for the success of this transmetalation reaction. The effect of the ligands in the precursor on the electron density before and after adsorption onto the surface has also been computed through population analysis. In the Cu(I) intermediate, charge is delocalized between the Cu precursor and the bare copper surface, indicating metallic bonding as the precursor densifies to the surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper is the main interconnect material in microelectronic devices, and a 2 nm-thick continuous Cu film seed layer needs to be deposited to produce microelectronic devices with the smallest features and more functionality. Atomic layer deposition (ALD) is the most suitable method to deposit such thin films. However, the reaction mechanism and the surface chemistry of copper ALD remain unclear, which is deterring the development of better precursors and design of new ALD processes. In this thesis, we study the surface chemistries during ALD of copper by means of density functional theory (DFT). To understand the effect of temperature and pressure on the composition of copper with substrates, we used ab initio atomistic thermodynamics to obtain phase diagram of the Cu(111)/SiO2(0001) interface. We found that the interfacial oxide Cu2O phases prefer high oxygen pressure and low temperature while the silicide phases are stable at low oxygen pressure and high temperature for Cu/SiO2 interface, which is in good agreement with experimental observations. Understanding the precursor adsorption on surfaces is important for understanding the surface chemistry and reaction mechanism of the Cu ALD process. Focusing on two common Cu ALD precursors, Cu(dmap)2 and Cu(acac)2, we studied the precursor adsorption on Cu surfaces by means of van der Waals (vdW) inclusive DFT methods. We found that the adsorption energies and adsorption geometries are dependent on the adsorption sites and on the method used to include vdW in the DFT calculation. Both precursor molecules are partially decomposed and the Cu cations are partially reduced in their chemisorbed structure. It is found that clean cleavage of the ligand−metal bond is one of the requirements for selecting precursors for ALD of metals. 2 Bonding between surface and an atom in the ligand which is not coordinated with the Cu may result in impurities in the thin film. To have insight into the reaction mechanism of a full ALD cycle of Cu ALD, we proposed reaction pathways based on activation energies and reaction energies for a range of surface reactions between Cu(dmap)2 and Et2Zn. The butane formation and desorption steps are found to be extremely exothermic, explaining the ALD reaction scheme of original experimental work. Endothermic ligand diffusion and re-ordering steps may result in residual dmap ligands blocking surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. This may lead to very slow growth rate, as was the case in the experimental work. By investigating the reduction of CuO to metallic Cu, we elucidated the role of the reducing agent in indirect ALD of Cu. We found that CuO bulk is protected from reduction during vacuum annealing by the CuO surface and that H2 is required in order to reduce that surface, which shows that the strength of reducing agent is important to obtain fully reduced metal thin films during indirect ALD processes. Overall, in this thesis, we studied the surface chemistries and reaction mechanisms of Cu ALD processes and the nucleation of Cu to form a thin film.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm’s law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hafnium oxide films have been deposited at 250 °C on silicon and germanium substrates by atomic layer deposition (ALD), using tetrakis-ethylmethylamino hafnium (TEMAH) and water vapour as precursors in a modified Oxford Instruments PECVD system. Self-limiting monolayer growth has been verified, characterised by a growth rate of 0.082 nm/ cycle. Layer uniformity is approximately within ±1% of the mean value. MOS capacitors have been fabricated by evaporating aluminium electrodes. CV analysis has been used to determine the bulk and interface properties of the HfO 2, and their dependence on pre-clean schedule, deposition conditions and post-deposition annealing. The dielectric constant of the HfO 2 is typically 18. On silicon, best results are obtained when the HfO 2 is deposited on a chemically oxidised hydrophilic surface. On germanium, best results are obtained when the substrate is nitrided before HfO 2 deposition, using an in-situ nitrogen plasma treatment. © Springer Science+Business Media, LLC 2007.