987 resultados para collaboration engineering
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
O presente relatório de estágio enquadra-se no âmbito do Trabalho Final de Mestrado (TFM) do curso de Engenharia Civil, área de especialização de Hidráulica, do Instituto Superior de Engenharia de Lisboa, e baseia-se na temática dos sistemas de abastecimento de água e drenagem de águas residuais. O estágio, intitulado de “Sistemas de Abastecimento de Agua e Saneamento Básico”, decorreu numa empresa de consultaria de engenharia denominada ENGIDRO – Estudos de Engenharia, Lda., vocacionada para a realização de estudos e projectos na área de Hidráulica, com particular incidência na Hidráulica Urbana e Saneamento Básico. O estágio iniciou-se com um adequado enquadramento profissional na empresa e incidiu principalmente no desenvolvimento de trabalhos de concepção e dimensionamento, a nível de projectos de execução, de sistemas de abastecimento de água e de saneamento básico, para 21 localidades da província de Lunda Sul, em Angola, com prestação de serviços para o Governo Provincial de Lunda Sul – Direcção Provincial da Energia e Aguas, juntamente com empresa CENGA – Consultores de Engenharia de Angola, S.A. Na prestação de serviços à entidade contratante foram efectuados trabalhos de campo, que consistiram principalmente em reconhecimentos do terreno, levantamentos topográficos e recolha de informação relevante sobre elementos condicionantes dos projectos (origens e disponibilidades de água, natureza e declive dos terrenos, tipos de infra-estruturas locais) e trabalhos de gabinete para compilação e análise da informação recolhida na elaboração dos projectos de execução, incluindo pecas desenhadas (desenhos pormenorizados) e peças escritas (memórias descritivas e justificativas, medições e orçamentos). Sendo os projectos destinados a aglomerados populacionais pouco desenvolvidos e com carências e condicionantes de diversa ordem (falta de energia eléctrica, de acessos, de telecomunicações, de meios técnicos e materiais, entre outros), prestou-se especial atenção aos aspectos da concepção, privilegiando soluções de baixa tecnologia, mais fáceis de explorar e manter com os recursos locais disponíveis.
Resumo:
CoDeSys "Controller Development Systems" is a development environment for programming in the area of automation controllers. It is an open source solution completely in line with the international industrial standard IEC 61131-3. All five programming languages for application programming as defined in IEC 61131-3 are available in the development environment. These features give professionals greater flexibility with regard to programming and allow control engineers have the ability to program for many different applications in the languages in which they feel most comfortable. Over 200 manufacturers of devices from different industrial sectors offer intelligent automation devices with a CoDeSys programming interface. In 2006, version 3 was released with new updates and tools. One of the great innovations of the new version of CoDeSys is object oriented programming. Object oriented programming (OOP) offers great advantages to the user for example when wanting to reuse existing parts of the application or when working on one application with several developers. For this reuse can be prepared a source code with several well known parts and this is automatically generated where necessary in a project, users can improve then the time/cost/quality management. Until now in version 2 it was necessary to have hardware interface called “Eni-Server” to have access to the generated XML code. Another of the novelties of the new version is a tool called Export PLCopenXML. This tool makes it possible to export the open XML code without the need of specific hardware. This type of code has own requisites to be able to comply with the standard described above. With XML code and with the knowledge how it works it is possible to do component-oriented development of machines with modular programming in an easy way. Eplan Engineering Center (EEC) is a software tool developed by Mind8 GmbH & Co. KG that allows configuring and generating automation projects. Therefore it uses modules of PLC code. The EEC already has a library to generate code for CoDeSys version 2. For version 3 and the constant innovation of drivers by manufacturers, it is necessary to implement a new library in this software. Therefore it is important to study the XML export to be then able to design any type of machine. The purpose of this master thesis is to study the new version of the CoDeSys XML taking into account all aspects and impact on the existing CoDeSys V2 models and libraries in the company Harro Höfliger Verpackungsmaschinen GmbH. For achieve this goal a small sample named “Traffic light” in CoDeSys version 2 will be done and then, using the tools of the new version it there will be a project with version 3 and also the EEC implementation for the automatically generated code.
Resumo:
ENEGI 2013: Atas do 2º Encontro Nacional de Engenharia e Gestão Industrial, Universidade de Aveiro, 17 e 18 de maio de 2013, Aveiro, Portugal.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Área de Especialização em Vias de Comunicação e Transportes
Resumo:
Conferência: 2nd Experiment at International Conference (Exp at)- Univ Coimbra, Coimbra, Portugal - Sep 18-20, 2013
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.
Resumo:
WorldFIP is standardised as European Norm EN 50170 - General Purpose Field Communication System. Field communication systems (fieldbuses) started to be widely used as the communication support for distributed computer-controlled systems (DCCS), and are being used in all sorts of process control and manufacturing applications within different types of industries. There are several advantages in using fieldbuses as a replacement of for the traditional point-to-point links between sensors/actuators and computer-based control systems. Indeed they concern economical ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation and distribution of the processing power over the field. Typically DCCS have real-time requirements that must be fulfilled. By this, we mean that process data must be transferred between network computing nodes within a maximum admissible time span. WorldFIP has very interesting mechanisms to schedule data transfers. It explicit distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis for guaranteeing the real-time requirements of both types of traffic. A major contribution is made in the analysis of worst-case response time of aperiodic transfer requests.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Extended and networked enterprises distribute the design of products, planning of the production process, and manufacturing regionally if not globally. Employees are therefore confronted with collaborative work over remote sites. A cost effective collaboration depends highly on the organization maintaining a common understanding for this kind of work and a suitable support with information and communication technology. The usual face to face work is going to be replaced at least partly if not totally by computer mediated collaboration. Creating and maintaining virtual teams is a challenge to work conditions as well as technology. New developments on cost-effective connections are providing not only vision and auditory perception but also haptic perception. Research results for improving remote collaboration are presented. Individual, social and cultural aspects are considered as new requirements on the employees of networked and extended enterprises.
Resumo:
The advent of Wireless Sensor Network (WSN) technologies is paving the way for a panoply of new ubiquitous computing applications, some of them with critical requirements. In the ART-WiSe framework, we are designing a two-tiered communication architecture for supporting real-time and reliable communications in WSNs. Within this context, we have been developing a test-bed application, for testing, validating and demonstrating our theoretical findings - a search&rescue/pursuit-evasion application. Basically, a WSN deployment is used to detect, localize and track a target robot and a station controls a rescuer/pursuer robot until it gets close enough to the target robot. This paper describes how this application was engineered, particularly focusing on the implementation of the localization mechanism.