148 resultados para carrageenan
Resumo:
Background: Pain markedly activates the hypothalamic-pituitary-adrenal (HPA) axis and increases plasma corticosterone release interfering significantly with nociceptive behaviour as well as the mechanism of action of analgesic drugs. Aims/Methods: In the present study, we monitored the time course of circulating corticosterone in two mouse strains (C57Bl/6 and Balb/C) under different pain models. In addition, the stress response was investigated following animal handling, intrathecal (i.t.) manipulation and habituation to environmental conditions commonly used in nociceptive experimental assays. We also examined the influence of within-cage order of testing on plasma corticosterone. Results: Subcutaneous injection of capsaicin precipitated a prompt stress response whereas carrageenan and complete Freund's adjuvant induced an increased corticosterone release around the third hour post-injection. However, carrageenan induced a longer increased corticosterone in C57Bl/6 mice. In partial sciatic nerve ligation, neuropathic pain model corticosterone increased only in the first days whereas mechanical hypersensitivity remained much longer. Animal handling also represents an important stressor whereas the i.t. injection per se does not exacerbate the handling-induced stress response. Moreover, the order of testing animals from the same cage does not interfere with plasma corticosterone levels in the intrathecal procedure. Animal habituation to the testing apparatus also does not reduce the immediate corticosterone increase as compared with non-habituated mice. Conclusion: Our data indicate that HPA axis activation in acute and chronic pain models is time dependent and may be dissociated from evoked hyperalgesia. Therefore, HPA-axis activation represents an important variable to be considered when designing experimental assays of persistent pain as well as for interpretation of data.
Resumo:
Muscle strains are among the most prevalent causes for athletes absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.
Resumo:
There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a subtumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth.
Resumo:
Spiranthera odoratissima A. St.-Hil., 'manaca', is a medicinal species used in Brazil, especially in central region, for the treatment of several diseases such as pain and inflammation. In this study, the methanol/aqueous phase of the ethanol extract of the leaves of 'manaca' (MAP), at the doses of 50, 150 and 500 mg/kg was used to evaluate the anti-inflammatory and/or antinociceptive effects and the possible anti-inflammatory mechanism. The antinociceptive and anti-inflammatory activities of MAP were assessed using formalin test, carrageenan-induced paw oedema. The myeloperoxidase activity, capillary permeability, leukocyte migration and tumour necrosis factor alpha (TNF-alpha) levels were evaluated in pleural exudate. The MAP reduced the licking time only in the later phase of formalin test, and showed anti-inflammatory activity by reducing the paw oedema, migration cell, myeloperoxidase activity, capillary permeability and TNF-alpha levels. In conclusion, we confirmed the inflammatory activity of MAP and affirm that this effect involves the reduction of TNF-alpha level.
Resumo:
Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.
Resumo:
Transcutaneous electrical nerve stimulation (TENS) reduces hyperalgesia and pain. Both low-frequency (LF) and high-frequency (HF) TENS, delivered at the same intensity (90% motor threshold [MT]) daily, result in analgesic tolerance with repeated use by the fifth day of treatment. The current study tested 1) whether increasing intensity by 10% per day prevents the development of tolerance to repeated TENS; and 2) whether lower intensity TENS (50% MT) produces an equivalent reduction in hyperalgesia when compared to 90% MT TENS. Sprague-Dawley rats with unilateral knee joint inflammation (3% carrageenan) were separated according to the intensity of TENS used: sham, 50% LF, 50% HF, 90% LF, 90% HF, and increased intensity by 10% per day (IF and HF). The reduced mechanical withdrawal threshold following the induction of inflammation was reversed by application of TENS applied at 90% MT intensity and increasing intensity for the first 4 days. On the fifth day, the groups that received 90% MT intensity showed tolerance. Nevertheless, the group that received an increased intensity on each day still showed a reversal of the mechanical withdrawal threshold with TENS. These results show that the development of tolerance can be delayed by increasing intensity of TENS. Perspective: Our results showed that increasing intensity in both frequencies of TENS was able to prevent analgesic tolerance. Results from this study suggest that increasing intensities could be a clinical method to prevent analgesic tolerance and contribute to the effective use of TENS in reducing inflammatory pain and future clinical trials. (c) 2012 by the American Pain Society
Resumo:
Ethnopharmacological relevance: The pharmacological activity of geopropolis collected by stingless bees (important and threatened pollinators), a product widely used in folk medicine by several communities in Brazil, especially in the Northeast Region, needs to be studied. Objective: The aim of this study was to evaluate the antinociceptive activity of Melipona scutellaris geopropolis (stingless bee) using different models of nociception. Material and methods: The antinociceptive activity of the ethanolic extract of geopropolis (EEGP) and fractions was evaluated using writhing induced by acetic acid, formalin test, carrageenan-induced hypernociception, and quantification of IL-1 beta and TNF-alpha. The chemical composition was assessed by quantification of total flavonoids and phenolic compounds. Results: EEGP and its hexane and aqueous fractions showed antinociceptive activity. Both EEGP and its aqueous fraction presented activity in the mechanical inflammatory hypernociception induced by the carrageenan model, an effect mediated by the inhibition of IL-1 beta and TNF-alpha. The chemical composition of EEGP and its hexane and aqueous fractions showed a significant presence of phenolic compounds and absence of flavonoids. Conclusion: Our data indicate that geopropolis is a natural source of bioactive substances with promising antinociceptive activity. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Antidepressants are reported to display anti-inflammatory effects. Nitric oxide (NO), in turn, has a key role in inflammation. The objective of the present study was to evaluate the effect of amitriptyline co-administered with L-NAME (a NO synthase inhibitor) on certain parameters of acute inflammatory response in rats, as a form to investigate a possible participation of NO in the anti-inflammatory effects of amitriptyline. For this, two animal models were used: carrageenan-induced paw edema and acute peritonitis. In the last one, peritoneal exudate, adhesion molecules expression by peripheral blood leukocytes and serum cytokines levels were evaluated. In a noninflammatory condition, serum levels of nitrates were determined. L-NAME induced a potentiation of the anti-inflammatory effects of amitriptyline (p < 0.05) in the paw edema model; however, these effects were not abrogated when L-NAME was substituted by L-arginine administration. A decrease in both leukocyte concentration and total number of cells in the peritoneal exudate and a reduction in the total serum levels of nitrates were observed with co-administration of L-NAME and amitriptyline (p < 0.05). No significant differences among groups were found concerning the expression of adhesion molecules by peripheral blood leukocytes (p > 0.05). There was a significant decrease on IL-1 beta and TNF-alpha serum levels in the experimental groups when compared to the control animals. Together the present results and the literature suggest that the anti-inflammatory effects of amitriptyline may be due to a decrease in NO production. A decrease in IL-1 beta/TNF-alpha serum levels may also be implicated in the results observed.
Resumo:
p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-alpha production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. (c) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Abstract Background Guava pomace is an example of the processing waste generated after the manufacturing process from the juice industry that could be a source of bioactives. Thus, the present investigation was carried out in order to evaluate the anti-inflammatory and antinociceptive potential and determinate the main phenolic compounds of a guava pomace extract (GPE). Methods The anti-inflammatory activity was evaluated by carrageenan, dextran, serotonin, histamine-induced paw edema and neutrophils migration in the peritoneal cavity models. Acetic acid-induced abdominal writhing and formalin test were performed to investigate the antinociceptive effects. In addition, the content of total phenolic and of individual phenolic compounds was determined by GC/MS. Results GPE showed anti-inflammatory activity by carrageenan, dextran, serotonin, histamine-induced paw edema and neutrophils migration in the peritoneal cavity models (p < 0.05). GPE also demonstrated antinociceptive activity by acetic acid-induced abdominal writhing and formalin test (p < 0.05). The total phenolic value was 3.40 ± 0.09 mg GAE/g and epicatechin, quercetin, myricetin, isovanilic and gallic acids were identified by GC/MS analysis. Conclusions The presence of bioactive phenolic compounds as well as important effects demonstrated in animal models suggest that guava pomace could be an interesting source of anti-inflammatory and analgesic substances.
Resumo:
Máster Oficial en Cultivos Marinos. Trabajo presentado como requisito parcial para la obtención del Título de Máster Oficial en Cultivos Marinos, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)
Resumo:
In dieser Arbeit wurde der Effekt verschiedener Hilfsstoffe auf die Permeabilität von Substanzen der BCS Klasse III untersucht. Drei pharmazeutische Hilfsstoffe wurden hinsichtlich der Möglichkeit ihres Einsatzes als Permeationsverbesserer in Arzneistoffformulierungen untersucht. Außerdem wurde die Beteiligung von Gallensalzen an der Nahrungsmittel-Interaktion von Trospium untersucht.rnEs wurden Komplexe aus Trospium und λ-Carrageen hergestellt. Eine verbesserte Permeation, die höchstwahrscheinlich durch Mukoadhäsion zustande kam, war im Ussing-Kammer-Modell sehr gut reproduzierbar. In vivo war der Effekt nur bei einigen Tieren zu sehen und es kam zu hohen Standardabweichungen.rnTrospium bildet Ionenpaare mit Gallensalzen, welche zu einer besseren Permeabilität des Wirkstoffes führten. In Gegenwart von Nahrungsfetten blieb dieser Effekt aus. Eine Beteiligung der Interaktion von Trospium und Gallensalzen am Food-Effekt kann auf Basis dieser Ergebnisse als wahrscheinlich gelten.rnIm Caco-2-Modell konnte bereits eine Verbesserung der Permeabilität von Trospium durch Zusatz von Eudragit E gezeigt werden. Nun konnte gezeigt werden, dass durch den Hilfsstoff auch in vivo in Ratten eine verbesserte Permeation erreicht werden kann.rnDie Permeationsverbesserung von Aciclovir durch Zusatz von Chitosan-HCl sollte untersucht werden. Im Caco-2-Modell kam es zu einer signifikanten Permeationsverbesserung. Im Ussing-Kammer-Modell wurde die Permeation nicht verbessert. In Loop-Studien konnte nur bei hohen Hilfsstoff-Konzentrationen eine Tendenz zur Permeationsverbesserung erkannt werden.rn
Resumo:
Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn
Resumo:
The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB(1)) and CB(2) receptors. Although the CB(1) receptor is responsible for the psychomodulatory effects, activation of the CB(2) receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis. Here, we report that the widespread plant volatile (E)-beta-caryophyllene [(E)-BCP] selectively binds to the CB(2) receptor (K(i) = 155 +/- 4 nM) and that it is a functional CB(2) agonist. Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have identified a putative binding site of (E)-BCP in the CB(2) receptor, showing ligand pi-pi stacking interactions with residues F117 and W258. Upon binding to the CB(2) receptor, (E)-BCP inhibits adenylate cylcase, leads to intracellular calcium transients and weakly activates the mitogen-activated kinases Erk1/2 and p38 in primary human monocytes. (E)-BCP (500 nM) inhibits lipopolysaccharide (LPS)-induced proinflammatory cytokine expression in peripheral blood and attenuates LPS-stimulated Erk1/2 and JNK1/2 phosphorylation in monocytes. Furthermore, peroral (E)-BCP at 5 mg/kg strongly reduces the carrageenan-induced inflammatory response in wild-type mice but not in mice lacking CB(2) receptors, providing evidence that this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB(2) receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis.
Resumo:
Lean, finely textured beef (LFTB) is a lean product derived from beef-fat trimmings. Characterization of LFTB showed that, while it is high in total protein, the LFTB contains more serum and connective tissue proteins and less myofibrillar proteins than muscle meat. Because of the protein differences, LFTB has less functionality in processed meats, resulting in lower yields and softer texture. Appropriate use of sodium chloride, sodium tripolyphosphate, k-carrageenan, or isolated soy protein achieved desired stability and yields in frankfurters with FTLB. The softer texture may be used to advantage in high-protein, low-fat meat products where excessive toughness or firmness is often a problem.