447 resultados para autoregressive
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
The so-called German Dominance Hypothesis (GDH) claimed that Bundesbank policies were transmitted into other European Monetary System (EMS) interest rates during the pre-euro era. We reformulate this hypothesis for the Central and Eastern European (CEE) countries that are on the verge of accessing the eurozone. We test this \Euro Dominance Hypothesis (EDH)" in a novel way using a global vector autoregressive (GVAR) approach that combines country-speci c error correction models in a global system. We nd that euro area monetary policies are transmitted into CEE interest rates which provides evidence for monetary integration between the eurozone and CEE countries. Our framework also allows for introducing global monetary shocks to provide empirical evidence regarding the e ects of the recent nancial crisis on monetary integration in Europe.
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
The paper aims to examine the empirical relationship between trade openness and economic growth of India for the time period 1970-2010. Trade openness is a multi-dimensional concept and hence measures of both trade barriers and trade volumes have been used as proxies for openness. The estimation results from Vector Autoregressive method suggest that growth in trade volumes accelerate economic growth in case of India. We do not find any evidence from our analysis that trade barriers lower growth.
Resumo:
We use factor augmented vector autoregressive models with time-varying coefficients to construct a financial conditions index. The time-variation in the parameters allows for the weights attached to each financial variable in the index to evolve over time. Furthermore, we develop methods for dynamic model averaging or selection which allow the financial variables entering into the FCI to change over time. We discuss why such extensions of the existing literature are important and show them to be so in an empirical application involving a wide range of financial variables.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
This paper introduces a State Space approach to explain the dynamics of rent growth, expected returns and Price-Rent ratio in housing markets. According to the present value model, movements in price to rent ratio should be matched by movements in expected returns and expected rent growth. The state space framework assume that both variables follow an autoregressive process of order one. The model is applied to the US and UK housing market, which yields series of the latent variables given the behaviour of the Price-Rent ratio. Resampling techniques and bootstrapped likelihood ratios show that expected returns tend to be highly persistent compared to rent growth. The Öltered expected returns is considered in a simple predictability of excess returns model with high statistical predictability evidenced for the UK. Overall, it is found that the present value model tends to have strong statistical predictability in the UK housing markets.
Resumo:
We investigate the dynamic and asymmetric dependence structure between equity portfolios from the US and UK. We demonstrate the statistical significance of dynamic asymmetric copula models in modelling and forecasting market risk. First, we construct “high-minus-low" equity portfolios sorted on beta, coskewness, and cokurtosis. We find substantial evidence of dynamic and asymmetric dependence between characteristic-sorted portfolios. Second, we consider a dynamic asymmetric copula model by combining the generalized hyperbolic skewed t copula with the generalized autoregressive score (GAS) model to capture both the multivariate non-normality and the dynamic and asymmetric dependence between equity portfolios. We demonstrate its usefulness by evaluating the forecasting performance of Value-at-Risk and Expected Shortfall for the high-minus-low portfolios. From back-testing, e find consistent and robust evidence that our dynamic asymmetric copula model provides the most accurate forecasts, indicating the importance of incorporating the dynamic and asymmetric dependence structure in risk management.
Resumo:
It has been recently emphasized that, if individuals have heterogeneous dynamics, estimates of shock persistence based on aggregate data are significatively higher than those derived from its disaggregate counterpart. However, a careful examination of the implications of this statement on the various tools routinely employed to measure persistence is missing in the literature. This paper formally examines this issue. We consider a disaggregate linear model with heterogeneous dynamics and compare the values of several measures of persistence across aggregation levels. Interestingly, we show that the average persistence of aggregate shocks, as measured by the impulse response function (IRF) of the aggregate model or by the average of the individual IRFs, is identical on all horizons. This result remains true even in situations where the units are (short-memory) stationary but the aggregate process is long-memory or even nonstationary. In contrast, other popular persistence measures, such as the sum of the autoregressive coefficients or the largest autoregressive root, tend to be higher the higher the aggregation level. We argue, however, that this should be seen more as an undesirable property of these measures than as evidence of different average persistence across aggregation levels. The results are illustrated in an application using U.S. inflation data.
Resumo:
In this paper we consider extensions of smooth transition autoregressive (STAR) models to situations where the threshold is a time-varying function of variables that affect the separation of regimes of the time series under consideration. Our specification is motivated by the observation that unusually high/low values for an economic variable may sometimes be best thought of in relative terms. State-dependent logistic STAR and contemporaneous-threshold STAR models are introduced and discussed. These models are also used to investigate the dynamics of U.S. short-term interest rates, where the threshold is allowed to be a function of past output growth and inflation.
Resumo:
This paper examines the determinants of young innovative companies’ (YICs) R&D activities taking into account the autoregressive nature of innovation. Using a large longitudinal dataset comprising Spanish manufacturing firms over the period 1990-2008, we find that previous R&D experience is a fundamental determinant for mature and young firms, albeit to a smaller extent in the case of the YICs, suggesting that their innovation behaviour is less persistent and more erratic. Moreover, our results suggest that firm and market characteristics play a distinct role in boosting the innovation activity of firms of different age. In particular, while market concentration and the degree of product diversification are found to be important in boosting R&D activities in the sub-sample of mature firms only, YICs’ spending on R&D appears to be more sensitive to demand-pull variables, suggesting the presence of credit constraints. These results have been obtained using a recently proposed dynamic type-2 tobit estimator, which accounts for individual effects and efficiently handles the initial conditions problem.
Resumo:
BACKGROUND Spain shows the highest bladder cancer incidence rates in men among European countries. The most important risk factors are tobacco smoking and occupational exposure to a range of different chemical substances, such as aromatic amines. METHODS This paper describes the municipal distribution of bladder cancer mortality and attempts to "adjust" this spatial pattern for the prevalence of smokers, using the autoregressive spatial model proposed by Besag, York and Molliè, with relative risk of lung cancer mortality as a surrogate. RESULTS It has been possible to compile and ascertain the posterior distribution of relative risk for bladder cancer adjusted for lung cancer mortality, on the basis of a single Bayesian spatial model covering all of Spain's 8077 towns. Maps were plotted depicting smoothed relative risk (RR) estimates, and the distribution of the posterior probability of RR>1 by sex. Towns that registered the highest relative risks for both sexes were mostly located in the Provinces of Cadiz, Seville, Huelva, Barcelona and Almería. The highest-risk area in Barcelona Province corresponded to very specific municipal areas in the Bages district, e.g., Suría, Sallent, Balsareny, Manresa and Cardona. CONCLUSION Mining/industrial pollution and the risk entailed in certain occupational exposures could in part be dictating the pattern of municipal bladder cancer mortality in Spain. Population exposure to arsenic is a matter that calls for attention. It would be of great interest if the relationship between the chemical quality of drinking water and the frequency of bladder cancer could be studied.
Resumo:
In recent years, some epidemiologic studies have attributed adverse effects of air pollutants on health not only to particles and sulfur dioxide but also to photochemical air pollutants (nitrogen dioxide and ozone). The effects are usually small, leading to some inconsistencies in the results of the studies. Furthermore, the different methodologic approaches of the studies used has made it difficult to derive generic conclusions. We provide here a quantitative summary of the short-term effects of photochemical air pollutants on mortality in seven Spanish cities involved in the EMECAM project, using generalized additive models from analyses of single and multiple pollutants. Nitrogen dioxide and ozone data were provided by seven EMECAM cities (Barcelona, Gijón, Huelva, Madrid, Oviedo, Seville, and Valencia). Mortality indicators included daily total mortality from all causes excluding external causes, daily cardiovascular mortality, and daily respiratory mortality. Individual estimates, obtained from city-specific generalized additive Poisson autoregressive models, were combined by means of fixed effects models and, if significant heterogeneity among local estimates was found, also by random effects models. Significant positive associations were found between daily mortality (all causes and cardiovascular) and NO(2), once the rest of air pollutants were taken into account. A 10 microg/m(3) increase in the 24-hr average 1-day NO(2)level was associated with an increase in the daily number of deaths of 0.43% [95% confidence interval (CI), -0.003-0.86%] for all causes excluding external. In the case of significant relationships, relative risks for cause-specific mortality were nearly twice as much as that for total mortality for all the photochemical pollutants. Ozone was independently related only to cardiovascular daily mortality. No independent statistically significant relationship between photochemical air pollutants and respiratory mortality was found. The results in this study suggest that, given the present levels of photochemical pollutants, people living in Spanish cities are exposed to health risks derived from air pollution.
Resumo:
In recent years, a growing number of studies suggests that increases in air pollution levels may have short-term impact on human health, even at pollution levels similar to or lower than those which have been considered to be safe to date. The different methodological approaches and the varying analysis techniques employed have made it difficult to make a direct comparison among all of the findings, preventing any clear conclusions from being drawn. This has led to multicenter projects such as the APHEA (Short-Term Impact of Air Pollution on Health. A European Approach) within a European Scope. The EMECAM Project falls within the context of the aforesaid multicenter studies and has a wide-ranging projection nationwide within Spain. Fourteen (14) cities throughout Spain were included in this Project (Barcelona, Metropolitan Area of Bilbao, Cartagena, Castellón, Gijón, Huelva, Madrid, Pamplona, Seville, Oviedo, Valencia, Vigo, Vitoria and Saragossa) representing different sociodemographic, climate and environmental situations, adding up to a total of nearly nine million inhabitants. The objective of the EMECAM project is that to asses the short-term impact of air pollution throughout all of the participating cities on the mortality for all causes, on the population and on individuals over age 70, for respiratory and cardiovascular design causes. For this purpose, with an ecological, the time series data analyzed taking the daily deaths, pollutants, temperature data and other factors taken from records kept by public institutions. The period of time throughout which this study was conducted, although not exactly the same for all of the cities involved, runs in all cases from 1990 to 1996. The degree of relationship measured by means of an autoregressive Poisson regression. In the future, the results of each city will be combined by means of a meta-analysis.
Resumo:
Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical situations with a very large number of parameters. We prove various convergence theorems for the algorithm. As an application, we first show that the results in Christiano et al. (1999) are very sensitive to the introduction of various priors that are widely used. These priors turn out to be associated with undesirable priors on observables. But an empirical prior on observables helps clarify the relevance of these estimates: we find much higher persistence of output responses to monetary policy shocks than the one reported in Christiano et al. (1999) and a significantly larger total effect.