937 resultados para Viability kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of cardiac viability and functional information enhances the identification of different heart tissues in the setting of ischemic heart disease. A method has recently been proposed for obtaining black-blood delayed-enhancement (DE) viability images using the stimulated-echo acquisition mode (STEAM) MRI pulse sequence in a single short breathhold. The method was validated against conventional inversion-recovery (IR) DE images for identifying regions of myocardial infarction (MI). The method was based on the acquisition of three consecutive images of the same anatomical slice. One image has T(1)-weighted contrast in which infarction appears bright. The two other images are used to construct an anatomical image of the heart, which is combined with the first image to produce a black-blood viability image. However, using appropriate modulation and demodulation frequencies, the latter two images bear useful information about myocardial deformation that results in a cardiac strain-encoding (SENC) functional image. In this work, a method is proposed for obtaining three consecutive SENC images in a single acquisition that can be combined to produce a composite image of the heart, which shows both functional and viability information. The proposed technique reduces scan time by one-half, compared with separate acquisitions of functional and viability images, and alleviates misregistration problems caused by separate breathholds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In animal societies, cooperation for the common wealth and latent conflicts due to the selfish interests of individuals are in delicate balance. In many ant species, colonies contain multiple breeders and workers interact with nestmates of varying degrees of relatedness. Therefore, workers could increase their inclusive fitness by preferentially caring for their closest relatives, yet evidence for nepotism in insect societies remains scarce and controversial. We experimentally demonstrate that workers of the ant Formica exsecta do not discriminate between highly related and unrelated brood, but that brood viability differs between queens. We further show that differences in brood viability are sufficient to explain a relatedness pattern that has previously been interpreted as evidence for nepotism. Hence, our findings support the view that nepotism remains elusive in social insects and emphasize the need for further controlled experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, numerous cases of morphological gonadal alterations in fish have been recorded throughout the world and across a wide range of species. In the whitefish Coregonus fatioi from the pre-alpine Lake Thun (Switzerland), the frequency of gonadal alterations is particularly high and the variety of alteration types large. Little is known about the proximal causes and the direct consequences of these morphological features on population persistence. In particular, the potential for the observed alterations to be the phenotypic expression of reduced genetic quality has not yet been addressed. In this study, we used offspring survival during embryogenesis as a proximate indicator of male genetic quality and tested whether the presence of gonadal alterations in males is an indicator of reduced quality. Embryos resulted from in vitro fertilizations of gametes from 126 males and females. We found no significant correlation between embryo survival and gonadal alteration in adults. Our findings suggest that in C. fatioi of Lake Thun, alterations in gonad morphology are not a phenotypic expression of variation in genetic quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a data-driven methodology to characterize the likelihood of orographic precipitation enhancement using sequences of weather radar images and a digital elevation model (DEM). Geographical locations with topographic characteristics favorable to enforce repeatable and persistent orographic precipitation such as stationary cells, upslope rainfall enhancement, and repeated convective initiation are detected by analyzing the spatial distribution of a set of precipitation cells extracted from radar imagery. Topographic features such as terrain convexity and gradients computed from the DEM at multiple spatial scales as well as velocity fields estimated from sequences of weather radar images are used as explanatory factors to describe the occurrence of localized precipitation enhancement. The latter is represented as a binary process by defining a threshold on the number of cell occurrences at particular locations. Both two-class and one-class support vector machine classifiers are tested to separate the presumed orographic cells from the nonorographic ones in the space of contributing topographic and flow features. Site-based validation is carried out to estimate realistic generalization skills of the obtained spatial prediction models. Due to the high class separability, the decision function of the classifiers can be interpreted as a likelihood or susceptibility of orographic precipitation enhancement. The developed approach can serve as a basis for refining radar-based quantitative precipitation estimates and short-term forecasts or for generating stochastic precipitation ensembles conditioned on the local topography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

'Good-genes' models of sexual selection predict significant additive genetic variation for fitness-correlated traits within populations to be revealed by phenotypic traits. To test this prediction, we sampled brown trout (Salmo trutta) from their natural spawning place, analysed their carotenoid-based red and melanin-based dark skin colours and tested whether these colours can be used to predict offspring viability. We produced half-sib families by in vitro fertilization, reared the resulting embryos under standardized conditions, released the hatchlings into a streamlet and identified the surviving juveniles 20 months later with microsatellite markers. Embryo viability was revealed by the sires' dark pigmentation: darker males sired more viable offspring. However, the sires' red coloration correlated negatively with embryo survival. Our study demonstrates that genetic variation for fitness-correlated traits is revealed by male colour traits in our study population, but contrary to predictions from other studies, intense red colours do not signal good genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past years, cardiovascular magnetic resonance (CMR) has proven its efficacy in large clinical trials, and consequently, the assessment of function, viability, and ischaemia by CMR is now an integrated part of the diagnostic armamentarium in cardiology. By combining these CMR applications, coronary artery disease (CAD) can be detected in its early stages and this allows for interventions with the goal to reduce complications of CAD such as infarcts and subsequently chronic heart failure (CHF). As the CMR examinations are robust and reproducible and do not expose patients to radiation, they are ideally suited for repetitive studies without harm to the patients. Since CAD is a chronic disease, the option to monitor CAD regularly by CMR over many decades is highly valuable. Cardiovascular magnetic resonance also progressed recently in the setting of acute coronary syndromes. In this situation, CMR allows for important differential diagnoses. Cardiovascular magnetic resonance also delineates precisely the different tissue components in acute myocardial infarction such as necrosis, microvascular obstruction (MVO), haemorrhage, and oedema, i.e. area at risk. With these features, CMR might also become the preferred tool to investigate novel treatment strategies in clinical research. Finally, in CHF patients, the versatility of CMR to assess function, flow, perfusion, and viability and to characterize tissue is helpful to narrow the differential diagnosis and to monitor treatment.