986 resultados para Twin Air, Multi Air, progettazione testata, motori diesel uso aeronautico, analisi FEM, analisi CFD
Resumo:
Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.
Resumo:
The selection of the energy source to power the transport sector is one of the main current concerns, not only relative with the energy paradigm but also due to the strong influence of road traffic in urban areas, which highly affects human exposure to air pollutants and human health and quality of life. Due to current important technical limitations of advanced energy sources for transportation purposes, biofuels are seen as an alternative way to power the world’s motor vehicles in a near-future, helping to reduce GHG emissions while at the same time stimulating rural development. Motivated by European strategies, Portugal, has been betting on biofuels to meet the Directive 2009/28/CE goals for road transports using biofuels, especially biodiesel, even though, there is unawareness regarding its impacts on air quality. In this sense, this work intends to clarify this issue by trying to answer the following question: can biodiesel use contribute to a better air quality over Portugal, particularly over urban areas? The first step of this work consisted on the characterization of the national biodiesel supply chain, which allows verifying that the biodiesel chain has problems of sustainability as it depends on raw materials importation, therefore not contributing to reduce the external energy dependence. Next, atmospheric pollutant emissions and air quality impacts associated to the biodiesel use on road transports were assessed, over Portugal and in particular over the Porto urban area, making use of the WRF-EURAD mesoscale numerical modelling system. For that, two emission scenarios were defined: a reference situation without biodiesel use and a scenario reflecting the use of a B20 fuel. Through the comparison of both scenarios, it was verified that the use of B20 fuels helps in controlling air pollution, promoting reductions on PM10, PM2.5, CO and total NMVOC concentrations. It was also verified that NO2 concentrations decrease over the mainland Portugal, but increase in the Porto urban area, as well as formaldehyde, acetaldehyde and acrolein emissions in the both case studies. However, the use of pure diesel is more injurious for human health due to its dominant VOC which have higher chronic hazard quotients and hazard indices when compared to B20.
Resumo:
One important step in the design of air stripping operations for the removal of VOC is the choice of operating conditions, which are based in the phase ratio. This parameter sets on directly the stripping factor and the efficiency of the operation. Its value has an upper limit determined by the flooding regime, which is previewed using empirical correlations, namely the one developed by Eckert. This type of approach is not suitable for the development of algorithms. Using a pilot scale column and a convenient solution, the pressure drop was determined in different operating conditions and the experimental values were compared with the estimations. This particular research will be incorporated in a global model for simulating the dynamics of air stripping using a multi variable distributed parameter system.
Resumo:
This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.
Resumo:
In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results
Resumo:
The Nature of air transport 1. Air transport is important • It is a big industry • It is vital to many industries and regions 2. It is multi-facited • Airlines • Airports • Air traffic control • Domestic and international 3. It is a network Industry • Portugal is part of Europe (legal fact) • Portugal is part of the world (globalization) 4. It is not wanted for its own sake • It “facilitates” and does not create 5. It has environmental implications • Noise • Greenhouse gas emissions
Resumo:
The ClearfLo project provides integrated measurements of the meteorology, composition and particulate loading of London's urban atmosphere to improve predictive capability for air quality. Air quality and heat are strong health drivers and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants such as ozone, nitrogen dioxide, and fine and coarse particulate matter in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the ClearfLo project's interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures. Within ClearfLo (www.clearflo.ac.uk), a large multi-institutional project funded by the UK Natural Environment Research Council (NERC), integrated measurements of meteorology, gaseous and particulate composition/loading within London's atmosphere were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, kerbside and rural locations were complemented with high-resolution numerical atmospheric simulations . Combining these (measurement/modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and summer Olympics 2012) focus upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.
Resumo:
This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
Resumo:
An experimental investigation of air enrichment in a combustion chamber designed to incinerate aqueous residues is presented. Diesel fuel and liquefied petroleum gas (LPG) were used independently as fuels. An increase of 85% in the incineration capacity was obtained with nearly 50% O-2 in the oxidant gas, in comparison to incineration with air only. The incineration capacity continues increasing for enrichment levels above 50% O-2 , although at a lower pace. For complete oxy-flame combustion (100% O-2 ), the increase of the incineration capacity was about 110% relative to the starting conditions and about 13.5% relative to the condition with 50% O-2 . The CO concentration measured near the flame front decreases drastically with the increase of O-2 content in the oxidant gas. At the chamber exit, the CO concentration was always near zero, indicating that the chamber residence time was sufficient to complete fuel oxidation in any test setting. For diesel fuel, the NOx was entirely formed in the first region of the combustion chamber. For diesel fuel, there was some increase in the NOx concentration up to 35% of O-2 ; this increase became very sharp after that. From 60 ppm, at operation with air only, the NOx concentration raises to 200 ppm at 35% O-2 , and then to 2900 ppm at 74% O-2 . The latter corresponds to six times more NOx in terms of the ratio of mass of NO to mass of residue, compared to the situation of combustion with air only. For LPG, the NOx concentrations reached 4200 ppm at 80% O-2 , corresponding to nine times more, also in terms of the ratio of mass of NO to mass of residue, in comparison with combustion with air only. Results of different techniques used to control the NOx emission during air enrichment are discussed: (a) variation of the recirculated zone intensity, (b) increase of the spray Sauter mean diameter, (c) fuel staging, (d) oxidizer staging, and (e) ammonia injection. The present paper shows that NOx emission may be controlled without damage of the increase of incineration capacity by the enrichment and with low emission of partial oxidation pollutants such as CO.
Resumo:
VIEIRA, R. D. P., A. C. TOLEDO, L. B. SILVA, F. M. ALMEIDA, N. R. DAMACENO-RODRIGUES, E. G. CALDINI, A. B. G. SANTOS, D. H. RIVERO, D. C. HIZUME, F. D. T. Q. S. LOPES, C. R. OLIVO, H. C. CASTRO-FARIA-NETO, M. A. MARTINS, P. H. N. SALDIVA, and M. DOLHNIKOFF. Anti-inflammatory Effects of Aerobic Exercise in Mice Exposed to Air Pollution. Med. Sci. Sports Exerc., Vol. 44, No. 7, pp. 1227-1234, 2012. Purpose: Exposure to diesel exhaust particles (DEP) results in lung inflammation. Regular aerobic exercise improves the inflammatory status in different pulmonary diseases. However, the effects of long-term aerobic exercise on the pulmonary response to DEP have not been investigated. The present study evaluated the effect of aerobic conditioning on the pulmonary inflammatory and oxidative responses of mice exposed to DEP. Methods: BALB/c mice were subjected to aerobic exercise five times per week for 5 wk, concomitantly with exposure to DEP (3 mg.mL (1); 10 mu L per mouse). The levels of exhaled nitric oxide, reactive oxygen species, cellularity, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed in bronchoalveolar lavage fluid, and the density of neutrophils and the volume proportion of collagen fibers were measured in the lung parenchyma. The cellular density of leukocytes expressing IL-1 beta, keratinocyte chemoattractant (KC), and TNF-alpha in lung parenchyma was evaluated with immunohistochemistry. The levels of IL-1 beta, KC, and TNF-alpha were also evaluated in the serum. Results: Aerobic exercise inhibited the DEP-induced increase in the levels of reactive oxygen species (P < 0.05); exhaled nitric oxide (P < 0.01); total (P < 0.01) and differential cells (P < 0.01); IL-6 and TNF-alpha levels in bronchoalveolar lavage fluid (P < 0.05); the level of neutrophils (P < 0.001); collagen density in the lung parenchyma (P < 0.05); the levels of IL-6, KC, and TNF-alpha in plasma (P < 0.05); and the expression of IL-1 beta, KC, and TNF-alpha by leukocytes in the lung parenchyma (P < 0.01). Conclusions: We conclude that long-term aerobic exercise presents protective effects in a mouse model of DEP-induced lung inflammation. Our results indicate a need for human studies that evaluate the pulmonary responses to aerobic exercise chronically performed in polluted areas.
Resumo:
Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF). UCs were analysed stereologically and by immunohistochemistry to localize isoprostane and endothelin receptors. The cords of mice from NF chambers were smaller in volume due to loss of mucoid connective tissue and decrease in volume of collagen. These structural changes and in umbilical vessels were associated with greater volumes of regions immunostained for isoprostane, ETAR and ETBR. Findings indicate that the adverse effects of PM on birth weight may be mediated in part by alterations in UC structure or imbalances in the endogenous regulators of vascular tone and oxidative stress. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Analisi degli aspetti tecnici relativi alla progettazione aeroportuale
Resumo:
BACKGROUND: Several adverse consequences are caused by mild perioperative hypothermia. Maintaining normothermia with patient warming systems, today mostly with forced air (FA), has thus become a standard procedure during anesthesia. Recently, a polymer-based resistive patient warming system was developed. We compared the efficacy of a widely distributed FA system with the resistive-polymer (RP) system in a prospective, randomized clinical study. METHODS: Eighty patients scheduled for orthopedic surgery were randomized to either FA warming (Bair Hugger warming blanket #522 and blower #750, Arizant, Eden Prairie, MN) or RP warming (Hot Dog Multi-Position Blanket and Hot Dog controller, Augustine Biomedical, Eden Prairie, MN). Core temperature, skin temperature (head, upper and lower arm, chest, abdomen, back, thigh, and calf), and room temperature (general and near the patient) were recorded continuously. RESULTS: After an initial decrease, core temperatures increased in both groups at comparable rates (FA: 0.33 degrees C/h +/- 0.34 degrees C/h; RP: 0.29 degrees C/h +/- 0.35 degrees C/h; P = 0.6). There was also no difference in the course of mean skin and mean body (core) temperature. FA warming increased the environment close to the patient (the workplace of anesthesiologists and surgeons) more than RP warming (24.4 degrees C +/- 5.2 degrees C for FA vs 22.6 degrees C +/- 1.9 degrees C for RP at 30 minutes; P(AUC) <0.01). CONCLUSION: RP warming performed as efficiently as FA warming in patients undergoing orthopedic surgery.
Resumo:
The NMMAPS data package contains daily mortality, air pollution, and weather data originally assembled as part of the National Morbidity,Mortality, and Air Pollution Study (NMMAPS). The data have recently been updated and are available for 108 United States cities for the years 1987--2000. The package provides tools for building versions of the full database in a structured and reproducible manner. These database derivatives may be more suitable for particular analyses. We describe how to use the package to implement a multi-city time series analysis of mortality and PM(10). In addition we demonstrate how to reproduce recent findings based on the NMMAPS data.
Resumo:
Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.