897 resultados para Telecommunication cables
Resumo:
Telecommunications is a key component in any country's economic infrastructure, requiring a vast amount of capital injection and ongoing technical support and innovation. Many developing countries experience handicaps in accessing capital and sustaining the required technical capability in their industralisation process. Therefore, attracting both capital investments and expertise by attuning the developing country's economic policies and legal environment to meet investors' expectations is a priority. Privatisation has been seen as a triumph by international institutions such as the World Bank, and a major requirement for developing economies to industrialise. However from a regulatory perspective, this process is far from straightforward. Implementing economic policies requires a number of regulations and regulatory instruments to be in place. Apart from the need for an independent regulator, regulatory outcomes are often dependent on the willingness of various stakeholders to comply with the course of actions undertaken by authorities. This article examines the factors steering the processes and changes in the telecommunication reforms of Indonesia and China.
Resumo:
Natural disasters and deliberate, willful damage to telecommunication infrastructure can result in a loss of critical voice and data services. This loss of service hinders the ability for efficient emergency response and can cause delays leading to loss of life. Current mobile devices are generally tied to one network operator. When a disaster is of significant impact, that network operator cannot be relied upon to provide service and coverage levels that would normally exist. While some operators have agreements with other operators to share resources (such as network roaming) these agreements are contractual in nature and cannot be activated quickly in an emergency. This paper introduces Fourth Generation (4G) wireless networks. 4G networks are highly mobile and heterogeneous, which makes 4G networks highly resilient in times of disaster.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system.
Resumo:
This paper describes a number of techniques for GNSS navigation message authentication. A detailed analysis of the security facilitated by navigation message authentication is given. The analysis takes into consideration the risk of critical applications that rely on GPS including transportation, finance and telecommunication networks. We propose a number of cryptographic authentication schemes for navigation data authentication. These authentication schemes provide authenticity and integrity of the navigation data to the receiver. Through software simulation, the performance of the schemes is quantified. The use of software simulation enables the collection of authentication performance data of different data channels, and the impact of various schemes on the infrastructure and receiver. Navigation message authentication schemes have been simulated at the proposed data rates of Galileo and GPS services, for which the resulting performance data is presented. This paper concludes by making recommendations for optimal implementation of navigation message authentication for Galileo and next generation GPS systems.