934 resultados para TEETH AND DENTAL APPLICATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vehicular ad hoc network (VANET) applications are principally categorized into safety and commercial applications. Efficient traffic management for routing an emergency vehicle is of paramount importance in safety applications of VANETs. In the first case, a typical example of a high dense urban scenario is considered to demonstrate the role of penetration ratio for achieving reduced travel time between source and destination points. The major requirement for testing these VANET applications is a realistic simulation approach which would justify the results prior to actual deployment. A Traffic Simulator coupled with a Network Simulator using a feedback loop feature is apt for realistic simulation of VANETs. Thus, in this paper, we develop the safety application using traffic control interface (TraCI), which couples SUMO (traffic simulator) and NS2 (network simulator). Likewise, the mean throughput is one of the necessary performance measures for commercial applications of VANETs. In the next case, commercial applications have been considered wherein the data is transferred amongst vehicles (V2V) and between roadside infrastructure and vehicles (I2V), for which the throughput is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements a/the Gibbs' energy enthalpy and entrupy vffarmation oj chromites, vanadites and alumlnat.:s 0/ F", Ni. Co'. Mn, Zn Mg and Cd, using solid oxide galvanic cells over a ternperature range extending approximately lOOO°C, have shown that the '~'Ilir"!,,, J'JrIl/iJ~ tion 0/ cubic 2-3 oxide spinel phases (MX!O,), from component oxide (MO) with rock-salt and X.Os whir c(1f'l/!ldwn st!'llt'lw,·. call b,' represented by a semi-empirical correlalion, ~S~ = --LiS + L'i,SM +~S~:"d(±O.3) cal.deg-1 mol-1 where /',.SM Is the entropy 0/calian mixing oillhe tetrahedral alld octahedral sites o/the spinel and Sr:~ is tlie enfropy associaf,'d Wifh Ih,' randomization a/the lahn-Telier distortions. A review a/the methods/or evaluating the cation distriblltion lfl spille!s suggeJ{j' l/r,l! Ihe most promising scheme is based Oil octahedral site preference energies from the crystal field theory for the Iral1silioll IIIl'f"! IlIIL';. For I/""-Irallsifioll melal cal ions site preference energies are derived relative /0 thol'lt fLI, [ransilion metal ions from measured high tClllP('ftJi ure Cal iUlI disll iiJuriol1 in spine! phases thar contail! one IransilioJl metal and another non-transition metal carion. For 2-3 srinds compulatiorrs b,IS"J Oil i.!c[J;' Temkin mixing on each catioll subialtice predici JistributionJ that are In fair agreement with X-ray and 1I1'IIIrOll ditTraction, /IIdg""!ic dll.! electrical propcrries, and spectroscopic measurements. In 2-4 spineis mixing vI ions do not foliow strictly ideal slllIistli:al Jaws, Th,' OIl/up) associated with the randomizalion 0/the Jllhn-Teller dislOriioll" appear to be significant, only ill spinels witll 3d'. 3d', 3d' (ifld~UI' iOtls in tetrahedral and 3d' and 3d9 ions in octahedral positions. Application 0/this structural model for predicting the thermodynamic proputies ofspinel solid .,olutiofl5 or,' illustrated. F,lr complex systems additional contributions arising from strain fields, redox equilibria and off-center ions have to be qllalllififti. The entropy correlation for spinels provides a method for evaluating structure tran:.jormafiofl entropies in silllple o.\id.-s, ["founlllion on the relative stabilities ofoxides in different crystallCtructures is USe/III for computer ea/culaliof! a/phase dfugrullls ofIlIrer,',,1 III (N.lll1ie5 by method, similar to thost: used by Kaufman and Bernstein for refractory alloy systems. Examples oftechnoiogical appliCation tnclude the predictioll ofdeoxidation equilibria in Fe-Mn-AI-O s),slelll at 1600°C duj ,'Ulllpltfalion 0/phase relutions in Fe-Ni-Cr-S system,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed ionic and electronic conduction in Zr02-based solid electrolytes was studied.The effect of impurities and second-phase particles on the mixed conduction parameter, P,, was measured for different types of ZrOZ electrolytes. The performance of solid-state sensors incorporating ZrOZ electrolytes is sometimes limited by electronic conduction in ZrOZ, especially at temperatures >I800 K. Methods for eliminating or minimizing errors in measured emf due to electronically driven transport of oxygen anions are discussed. Examples include probes for monitoring oxygen content in liquid steel as well as the newly developed sulfur sensor based on a ZrOz(Ca0) + CaS electrolyte. The use of mixed conducting ZrOZ as a semipermeable membrane or chemically selective sieve for oxygen at high temperatures is discussed. Oxygen transport from liquid iron to CO + C& gas mixtures through a ZrOZ membrane driven by a chemical potential gradient, in the absence of electrical leads or imposed potentials, was experimentally observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lagrange's equation is utilized to show the analogy of a lossless microwave cavity resonator with the conventional LC network. A brief discussion on the resonant frequencies of a microwave cavity resonator and the two degenerate companion modes H01 and E11 appearing in a cavity is given. The first order perturbation theory of a small deformation of the wall of a cavity is discussed. The effects of perturbation, such as the change in the resonant frequency and the Q of a cavity, the change in the electromagnetic field configurations and hence mixing of modes are also discussed. An expression for the coupling coefficient between the two degenerate modes H01 and E11 is derived with the help of the field equations. Results indicate that in the absence of perturbation the above two degenerate modes can co-exist without losing their individual identities. Several applications of the perturbation theory, such as the measurement of the dielectric properties of matter, study of ferromagnetic resonance, etc., are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose FeatureMatch, a generalised approximate nearest-neighbour field (ANNF) computation framework, between a source and target image. The proposed algorithm can estimate ANNF maps between any image pairs, not necessarily related. This generalisation is achieved through appropriate spatial-range transforms. To compute ANNF maps, global colour adaptation is applied as a range transform on the source image. Image patches from the pair of images are approximated using low-dimensional features, which are used along with KD-tree to estimate the ANNF map. This ANNF map is further improved based on image coherency and spatial transforms. The proposed generalisation, enables us to handle a wider range of vision applications, which have not been tackled using the ANNF framework. We illustrate two such applications namely: 1) optic disk detection and 2) super resolution. The first application deals with medical imaging, where we locate optic disks in retinal images using a healthy optic disk image as common target image. The second application deals with super resolution of synthetic images using a common source image as dictionary. We make use of ANNF mappings in both these applications and show experimentally that our proposed approaches are faster and accurate, compared with the state-of-the-art techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti-6Al-4V is widely used to prepare biomedical implant for orthopaedic and dental applications, but it is an expensive choice relative to other implant materials such as stainless steels and Co-Cr alloys, in large part due to the high manufacturing cost. Adding boron to refine the as cast microstructure of Ti-6Al-4V can eliminate the need for extensive hot working and thereby reduce processing costs. The effect of 0.1 wt-% boron addition and the choice of processing route (forging or extrusion) was studied in the context of potential biomedical applications. Corrosion tests in simulated body fluid indicated that the presence of boron increased the corrosion rate of Ti-6Al-4V and that the increase was higher for forged alloys than for extruded alloys. Boron addition and processing route were found to have a minimal effect on the viability of osteoblasts on the alloy surfaces. It is concluded that the addition of boron could offer advantages during the processing of Ti-6Al-4V for biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 mu g L-1) in aqueous as well as real samples. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The remarkable capability of nature to design and create excellent self-assembled nano-structures, especially in the biological world, has motivated chemists to mimic such systems with synthetic molecular and supramolecular systems. The hierarchically organized self-assembly of low molecular weight gelators (LMWGs) based on non-covalent interactions has been proven to be a useful tool in the development of well-defined nanostructures. Among these, the self-assembly of sugar-derived LMWGs has received immense attention because of their propensity to furnish biocompatible, hierarchical, supramolecular architectures that are macroscopically expressed in gel formation. This review sheds light on various aspects of sugar-derived LMWGs, uncovering their mechanisms of gelation, structural analysis, and tailorable properties, and their diverse applications such as stimuli-responsiveness, sensing, self-healing, environmental problems, and nano and biomaterials synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications. (C) 2015 Elsevier B.V. All rights reserved.