920 resultados para Sustainable management
Resumo:
Groundwater is a major resource on Bribie Island and its sustainable management is essential to maintain the natural and modified eco-systems, as well as the human population and the integrity of the island as a sand mass. An effective numerical model is essential to enable predictions, and to test various water use and rainfall/climate scenarios. Such a numerical model must, however, be based on a representative conceptual hydrogeological model to allow incorporation of realistic controls and processes. Here we discuss the various hydrogeological models and parameters, and hydrological properties of the materials forming the island. We discuss the hydrological processes and how they can be incorporated into these models, in an integrated manner. Processes include recharge, discharge to wetlands and along the coastline, abstraction, evapotranspiration and potential seawater intrusion. The types and distributions of groundwater bores and monitoring are considered, as are scenarios for groundwater supply abstraction. Different types of numerical models and their applicability are also considered
Resumo:
In Australia, the spread and dominance of non-native plant species has been identified as a serious threat to rangeland biodiversity and ecosystem functioning. Rangelands extend over 70% of Australia’s land mass or more than 6 million km2. These rangelands consist of a diverse set of ecosystems including grasslands, shrub-lands, and woodlands spanning numerous climatic zones, ranging from arid to mesic. Because of the high economic, social, and environmental values, sustainable management of these vast landscapes is critical for Australia’s future. More than 2 million people live in these areas and major industries are ranching, mining, and tourism. In terms of biodiversity values, 53 of 85 of Australia’s biogeographical regions and 5 of 15 identified biodiversity hotspots are found in rangelands.
Resumo:
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.
Resumo:
Vessel-source marine pollution is one of the main sources of marine pollution in Bangladesh. Due to unfettered operation of vessels, the country has been exposed to massive pollution that is causing a serious imbalance in the marine environment. Against this backdrop, this article seeks to demonstrate that the regulatory system of Bangladesh should be strengthened and made more effective in the light of international instruments to ensure the conservation and sustainable management of its marine environment. With this aim the article examines the present status of implementation of the MARPOL Convention in Bangladesh
Resumo:
Reducing Emissions from Deforestation and Forest Degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+) has emerged out of the United Nations Framework Convention on Climate Change (UNFCCC)/Kyoto Protocol negotiations. It is intended to be a mechanism to channel funding (from both public and private sources) for reducing emissions from the forest sector. It is an international climate change policy that relies on national implementation. In order to attract and manage REDD+ investments (both public and private), countries need to decide on their approach to REDD+ implementation through a series of policy choices, and then implement those policy choices through strong legal frameworks. An important question for REDD+ host countries to consider, therefore, is how to develop robust legal structures to facilitate REDD+ implementation. These legal frameworks could be based on existing laws, and/or require new law making.
Resumo:
Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.
Resumo:
Exotic grasses have been introduced in countries worldwide for pasture improvement, soil stabilisation and ornamental purposes. Some of these introductions have proven successful, but many have not (Cook & Dias 2006). In Australia, the Commonwealth Plant Introduction Scheme was initiated in 1929, and over-time introduced more than 5000 species of grasses, legumes and other forage and browse plants (Cook & Dias 2006). Lonsdale (1994) suggested that, in tropical Australia, 13% of introductions have become a problem, with only 5% being considered useful for agriculture. Low (1997) suggested that 5 out of 18 of Australia's worst tropical environmental weeds were intentionally introduced as pasture grasses. The spread and dominance of invasive grass species that degrade the quality of pastures for production can impact significantly on the livelihoods of small proprietors. Although Livestock grazing contributes only a small percentage to the world's GDP (1.5%), maintaining the long-term stability of this industry is crucial because of the high social and environmental consequence of a collapse. One billion of the world's poor are dependent on livestock grazing for food and income with this industry occupying more than 25% of the world's land base (Steinfeld et al. 2006). The ling-term sustainability of livestock grazing is also crucial for the environment. A recent FAO report attributed livestock production as a major cause of five of the most serious environmental problems: global warming, land degredation, air and water pollution, and the loss of biodiversity (Steinfeld et al. 2006). For these reasons, finding more effective approaches that guide the sustainable management of pastures is urgently needed. In Australia more than 55% of land use is for livestock grazing by sheelp and/or cattle. This land use dominate in the semi-arid and arid regions where rainfall and soil conditions are marginal for production (Commonwealth of Australia 2004). Although the level of agriculture production by conglomerates is increasing, the majority of livestock grazing within Australia remains family owned and operated (Commonwealth of Australia 2004). The sustainability of production from a grazed pasture is dependent on its botanical composition (Kemp & Dowling 1991, Kemp et al. 1996). In a grazed pasture, the dominance of an invasive grass species can impact on the functional integrity of the ecosystem, including production and nutrient cycling; wwhich will in turn, affect the income of proprietors and the ability of the system to recover from disturbance and environmental change. In Australia, $0.3 billion is spent on weed control in livestock production, but despite this substantial investment $1.9 billion is still lost in yield as a result of weeds (Sinden et al. 2004). In this paper, we adaprt a framework proposed for the restoration of degraded rainforest communities (Lamb & Gilmour 2003, Lamb et al. 2005) to compare and contrast options for recovering function integrity (i.e. a diverse set of desirable plant species that maintain key ecological processes necessary for sustainable production and nutrient cycling) within pasture communities dominated by an invasive grass species. To do this, we uase a case-study of the invasion of Eragrostis curvula (Africal lovegrss; hereafter, Lovegrass), a serious concern in Australian agricultural communities (Parsons and Cuthbertson 1992). The spread and dominance of Lovegrass is a problem because its low palatability, low nutritional content and competitiveness affect the livelihood of graziers by reducing the diversity of other plant species. We conclude by suggesting modifications to this framework for pasture ecosystems to help increase the effiency of strategies to protect functional integrity and balance social/economic and biodiversity values.
Resumo:
Heliothine moths (Lepidoptera: Heliothinae) include some of the world's most devastating pest species. Whereas the majority of nonpest heliothinae specialize on a single plant family, genus, or species, pest species are highly polyphagous, with populations often escalating in size as they move from one crop species to another. Here, we examine the current literature on heliothine host-selection behavior with the aim of providing a knowledge base for research scientists and pest managers. We review the host relations of pest heliothines, with a particular focus on Helicoverpa armigera (Hubner), the most economically damaging of all heliothine species. We then consider the important question of what constitutes a host plant in these moths, and some of the problems that arise when trying to determine host plant status from empirical studies on host use. The top six host plant families in the two main Australian pest species (H. armigera and Helicoverpa punctigera Wallengren) are the same and the top three (Asteraceae, Fabaceae, and Malvaceae) are ranked the same (in terms of the number of host species on which eggs or larvae have been identified), suggesting that these species may use similar cues to identify their hosts. In contrast, for the two key pest heliothines in the Americas, the Fabaceae contains approximate to 1/3 of hosts for both. For Helicoverpa zea (Boddie), the remaining hosts are more evenly distributed, with Solanaceae next, followed by Poaceae, Asteraceae, Malvaceae, and Rosaceae. For Heliothis virescens (F.), the next highest five families are Malvaceae, Asteraceae, Solanaceae, Convolvulaceae, and Scrophulariaceae. Again there is considerable overlap in host use at generic and even species level. H. armigera is the most widely distributed and recorded from 68 plant families worldwide, but only 14 families are recorded as a containing a host in all geographic areas. A few crop hosts are used throughout the range as expected, but in some cases there are anomalies, perhaps because host plant relation studies are not comparable. Studies on the attraction of heliothines to plant odors are examined in the context of our current understanding of insect olfaction, with the aim of better understanding the connection between odor perception and host choice. Finally, we discuss research into sustainable management of pest heliothines using knowledge of heliothine behavior and ecology. A coordinated international research effort is needed to advance our knowledge on host relations in widely distributed polyphagous species instead of the localized, piecemeal approaches to understanding these insects that has been the norm to date.
Resumo:
Queensland fruit fly is Australia's most serious insect pest of horticulture. The fly lays its eggs into fruit, where they hatch into maggots which destroy the fruit. Understanding egg laying behaviour, known as oviposition, is a critical but under-researched aspect of fruit fly biology. This thesis focused on three aspects of oviposition: the role of fruit peel as a physical barrier to oviposition; the quality of fruit for maggot development; and the structure and wear of the egg laying organ – the ovipositor. Results showed that flies selected fruit based on their suitability for offspring survival, not because of the softness or hardness of fruit peel. Previously reported use of holes or wounds in fruit peel by ovipositing females was determined to be a mechanism which saved the female time, not a mechanism to reduce ovipositor wear. The results offer insights into the evolution of host use by fruit flies and their sustainable management.
Resumo:
Batches of glasshouse-grown flowering sorghum plants were placed in circular plots for 24 h at two field sites in southeast Queensland, Australia on 38 occasions in 2003 and 2004, to trap aerial inoculum of Claviceps africana. Plants were located 20-200 m from the centre of the plots. Batches of sorghum plants with secondary conidia of C. africana on inoculated spikelets were placed at the centre of each plot on some dates as a local point source of inoculum. Plants exposed to field inoculum were returned to a glasshouse, incubated at near-100% relative humidity for 48 h and then at ambient relative humidity for another week before counting infected spikelets to estimate pathogen dispersal. Three times as many spikelets became infected when inoculum was present within 200 m of trap plants, but infected spikelets did not decline with increasing distance from local source within the 200 m. Spikelets also became infected on all 10 dates when plants were exposed without a local source of infected plants, indicating that infection can occur from conidia surviving in the atmosphere. In 2005, when trap plants were placed at 14 locations along a 280 km route, infected spikelets diminished with increasing distance from sorghum paddocks and infection was sporadic for distances over 1 km. Multiple regression analysis showed significant influence of moisture related weather variables on inoculum dispersal. Results suggest that sanitation measures can help reduce ergot severity at the local level, but sustainable management will require better understanding of long-distance dispersal of C. africana inoculum.
Resumo:
Rainfall variability is a challenge to sustainable and pro. table cattle production in northern Australia. Strategies recommended to manage for rainfall variability, like light or variable stocking, are not widely adopted. This is due partly to the perception that sustainability and profitability are incompatible. A large, long-term grazing trial was initiated in 1997 in north Queensland, Australia, to test the effect of different grazing strategies on cattle production. These strategies are: (i) constant light stocking (LSR) at long-term carrying capacity (LTCC); (ii) constant heavy stocking (HSR) at twice LTCC; (iii) rotational wet-season spelling (R/Spell) at 1.5 LTCC; (iv) variable stocking (VAR), with stocking rates adjusted in May based on available pasture; and (v) a Southern Oscillation Index (SOI) variable strategy, with stocking rates adjusted in November, based on available pasture and SOI seasonal forecasts. Animal performance varied markedly over the 10 years for which data is presented, due to pronounced differences in rainfall and pasture availability. Nonetheless, lighter stocking at or about LTCC consistently gave the best individual liveweight gain (LWG), condition score and skeletal growth; mean LWG per annum was thus highest in the LSR (113 kg), intermediate in the R/Spell (104 kg) and lowest in the HSR(86 kg). MeanLWGwas 106 kg in the VAR and 103 kg in the SOI but, in all years, the relative performance of these strategies was dependent upon the stocking rate applied. After 2 years on the trial, steers from lightly stocked strategies were 60-100 kg heavier and received appreciable carcass price premiums at the meatworks compared to those under heavy stocking. In contrast, LWG per unit area was greatest at stocking rates of about twice LTCC; mean LWG/ha was thus greatest in the HSR (21 kg/ha), but this strategy required drought feeding in four of the 10 years and was unsustainable. Although LWG/ha was lower in the LSR (mean 14 kg/ha), or in strategies that reduced stocking rates in dry years like the VAR(mean 18 kg/ha) and SOI (mean 17 kg/ha), these strategies did not require drought feeding and appeared sustainable. The R/Spell strategy (mean 16 kg/ha) was compromised by an ill-timed fire, but also performed satisfactorily. The present results provide important evidence challenging the assumption that sustainable management in a variable environment is unprofitable. Further research is required to fully quantify the long-term effects of these strategies on land condition and profitability and to extrapolate the results to breeder performance at the property level.
Resumo:
For pasture growth in the semi-arid tropics of north-east Australia, where up to 80% of annual rainfall occurs between December and March, the timing and distribution of rainfall events is often more important than the total amount. In particular, the timing of the 'green break of the season' (GBOS) at the end of the dry season, when new pasture growth becomes available as forage and a live-weight gain is measured in cattle, affects several important management decisions that prevent overgrazing and pasture degradation. Currently, beef producers in the region use a GBOS rule based on rainfall (e. g. 40mm of rain over three days by 1 December) to define the event and make their management decisions. A survey of 16 beef producers in north-east Queensland shows three quarters of respondents use a rainfall amount that occurs in only half or less than half of all years at their location. In addition, only half the producers expect the GBOS to occur within two weeks of the median date calculated by the CSIRO plant growth days model GRIM. This result suggests that in the producer rules, either the rainfall quantity or the period of time over which the rain is expected, is unrealistic. Despite only 37% of beef producers indicating that they use a southern oscillation index (SOI) forecast in their decisions, cross validated LEPS (linear error in probability space) analyses showed both the average 3 month July-September SOI and the 2 month August-September SOI have significant forecast skill in predicting the probability of both the amount of wet season rainfall and the timing of the GBOS. The communication and implementation of a rigorous and realistic definition of the GBOS, and the likely impacts of anthropogenic climate change on the region are discussed in the context of the sustainable management of northern Australian rangelands.