973 resultados para Steam-boilers, Water-tube.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show:  Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load.  There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures.  The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases.  The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable operation of a sugar factory boiler station is essential for efficient and timely processing of the cane supply. Sugar factory boilers have to contend with changes in fuel quality caused by variations in performance of the extraction station, different cane varieties and associated agronomic factors along with fluctuations in factory steam demand. These variations can affect the stability of combustion in boiler furnaces leading to reductions in boiler steam output and large furnace pressure fluctuations that can cause serious damage. This paper investigates the causes of unstable combustion, discusses aspects of boiler design that make a boiler more susceptible to unstable combustion and uses modelling to evaluate different options for improving combustion stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary purpose of this paper is to overview a selection of advanced water treatment technology systems that are suited for application in towns and settlements in remote and very remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. This recognises that sanitation and water treatment are inextricably linked and both are needed to reduce risks to environment and population health from contaminated water sources. For both Australia and Sri Lanka only a small fraction of the settlements in rural and remote regions are connected to water treatment facilities and town water supplies. In Australia’s remote/very remote regions raw water is drawn from underground sources and rainwater capture. Most settlements in rural Sri Lanka rely on rivers, reservoirs, wells, springs or carted water. Furthermore, Sri Lanka has more than 25,000 hand pumped tube wells which saved the communities during recent droughts. Decentralised water supply systems offer the opportunity to provide safe drinking water to these remote/very remote and rural regions where centralised systems are not feasible due to socio-cultural, economic, political, technological reasons. These systems reduce health risks from contaminated water supplies. In remote areas centralized systems fail due to low population density and less affordability. Globally, a new generation of advanced water treatment technologies are positioned to make a major impact on the provision of safe potable water in remote/very remote regions in Australia and rural regions in Sri Lanka. Some of these systems were developed for higher income countries. However, with careful selection and further research they can be tailored to match local socio-economic conditions and technical capacity. As such, they can equally be used to provide decentralised water supply in communities in developed and developing countries such as Australia and Sri Lanka.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two stage Pulse Tube Cryocooler (PTC) is designed and fabricated which reaches a no-load temperature of 2.5K in the second stage and similar to 60 K in the first stage respectively. The system provides a cooling power of similar to 250 mW at 5K in the second stage. Stainless steel meshes (size 200) and lead (Pb) granules are used as the first stage regenerator materials and combination of Pb with Er3Ni / HoCu2 are used as the second stage regenerator materials. The system operates at 1.6 Hz using a 6 kW water cooled helium compressor. Studies conducted by varying the dimensions of Pulse Tubes and regenerators show that the dimensions of the Pulse Tubes are more critical to the performance of the Cryocooler than those of the regenerators. Experimental studies show that the optimum volume ratios of Er3Ni to Pb and HoCu2 to Pb in the second stage regenerator should be 3:2 and 2:3 respectively for the best performance. Further, systems with HoCu2 performed better than those with Er3Ni. The theoretical analysis of the system has been carried out using a simple isothermal model. The experimentally measured cooling powers are in good agreement with the theoretical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ORANGE red and amorphous peroxy-titanium complexes of oxalic, malonic and maleic acids1-3, when vacuum-dried, have co-ordinated water molecules firmly bonded to the central titanium atom as shown in formula (I). The peroxy-oxygen from these compounds is slowly lost even at room temperature because of the strained peroxy-group3,4. The compounds, when kept at 95°-100°C. for about three days, give deperoxygenated compounds of the type (II). However, a sample of peroxy-titanium oxalate sealed in a glass tube lost all its peroxy-oxygen in about four years and gave a white crystalline basic oxalate (II). The amorphous nature of the compounds may be due to random hydrogen bonding in the complexes. The crystallinity observed in one of the deperoxygenated titanyl oxalates may be due to the rearrangement of the molecules during ageing for more than four years. The infra-red absorption of these compounds was studied to find out the effect of co-ordination and hydrogen bonding on the infra-red bands of the free water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius. (C) 2011 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen is a clean energy carrier and highest energy density fuel. Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce(1-x)Ru(x)O(2-delta) (0 <= x <= 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions prepared and tested, Ce(0.95)Ru(0.05)O(2-delta) (5% Ru(4+) ion substituted in CeO(2)) showed very high WGS activity in terms of high conversion rate (20.5 mu mol.g(-1).s(-1) at 275 degrees C) and low activation energy (12.1 kcal/mol). Over 99% conversion of CO to CO(2) by H(2)O is observed with 100% H(2) selectivity at >= 275 degrees C. In presence of externally fed CO(2) and H(2) also, complete conversion of CO to CO(2) was observed with 100% H(2) selectivity in the temperature range of 305-385 degrees C. Catalyst does not deactivate in long duration on/off WGS reaction cycle due to absence of surface carbon and carbonate formation and sintering of Ru. Due to highly acidic nature of Ru(4+) ion, surface carbonate formation is also inhibited. Sintering of noble metal (Ru) is avoided in this catalyst because Ru remains in Ru(4+) ionic state in the Ce(1-x)Ru(x)O(2-delta) catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered steam injection, widely used in Liaohe Oilfield at Present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory. According to gas-liquid two-phase flow theory and beat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.