971 resultados para Silicon detectors, transient current technique (TCT), TCAD, ATLAS, ATHENA, SILAVACO, MixedMode


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current noninvasive techniques for the routine and frequent quantification of peripheral lymphedema in patients are total limb volume measurement (by water immersion or by circumferential measurements) and bioelectrical impedance analysis (BIA). However both of these techniques require standardizing the measurement using a contralateral measurement from the unaffected limb, Hence these techniques are essentially restricted to unilateral lymphedema. This paper describes the results from a preliminary study to investigate an alternative approach to the analysis of the data from multiple frequency BIA to produce an index of lymphedema without the need for normalization to another body segment. Twenty patients receiving surgical treatment for breast cancer were monitored prior to surgery and again after diagnosis with unilateral lymphedema. The data recorded were total limb volume, by circumferential measurements; and BIA measurements of both limbs. From these measurements total limb volumes and extracellular fluid volumes were calculated and expressed as ratios of the affected limb to that of the unaffected limb. An index of the ratio of the extracellular fluid volume to the intracellular fluid volume was determined. This ECW/ICW index was calculated for both the affected and unaffected limbs at both measurement times. Results confirmed that the established techniques of total limb volume and extracellular fluid volume normalized to the unaffected contralateral limb were accurate in the detection of lymphedema (p < 10(-6)). Comparison of the ECW/ICW index from the affected limb after diagnosis with that from the pre-surgery measurement revealed a significant (p< 10(-6)) and considerable (75%) increase. The results of this pilot study suggest that by using multiple frequency bioelectrical impedance analysis, an index of the ECW/ICW ratio can be obtained and this index appears to have an equal, or better, sensitivity, than the other techniques in detecting lymphedema. More importantly, this index does not require normalization to another body segment and can be used to detect all types of peripheral edema including both unilateral and bilateral lymphedema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large area hydrogenated amorphous silicon single and stacked p-i-n structures with low conductivity doped layers are proposed as monochrome and color image sensors. The layers of the structures are based on amorphous silicon alloys (a-Si(x)C(1-x):H). The current-voltage characteristics and the spectral sensitivity under different bias conditions are analyzed. The output characteristics are evaluated under different read-out voltages and scanner wavelengths. To extract information on image shape, intensity and color, a modulated light beam scans the sensor active area at three appropriate bias voltages and the photoresponse in each scanning position ("sub-pixel") is recorded. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned, thus enabling color separation. The operation of the sensor is exemplified and supported by a numerical simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 degrees C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si: H were obtained from transmission and reflection spectra. By employing p(+) nc-Si: H as a window layer combined with a p' a-SiC buffer layer, a-Si: H-based p-p'-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the photodiode capacitance dependence on imposed light and applied voltage using different devices. The first device is a double amorphous silicon pin-pin photodiode; the second one a crystalline pin diode and the last one a single pin amorphous silicon diode. Double amorphous silicon diodes can be used as (de)multiplexer devices for optical communications. For short range applications, using plastic optical fibres, the WDM (wavelength-division multiplexing) technique can be used in the visible light range to encode multiple signals. Experimental results consist on measurements of the photodiode capacitance under different conditions of imposed light and applied voltage. The relation between the capacitive effects of the double diode and the quality of the semiconductor internal junction will be analysed. The dynamics of charge accumulations will be measured when the photodiode is illuminated by a pulsed monochromatic light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 10 kJ electromagnetic forming (EMF) modulator with energy recovery based on two resonant power modules, each containing a 4.5 kV/30-kA silicon controlled rectifier, a 1.11-mF capacitor bank and an energy recovery circuit, working in parallel to allow a maximum actuator discharge current amplitude and rate of 50 kA and 2 kA/mu s was successfully developed and tested. It can be plugged in standard single phase 230 V/16 A mains socket and the circuit is able to recover up to 32% of its initial energy, reducing the charging time of conventional EMF systems by up to 68%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hoje em dia as fontes de alimentação possuem correção do fator de potência, devido às diversas normas regulamentares existentes, que introduziram grandes restrições no que respeita à distorção harmónica (THD) e fator de potência (FP). Este trabalho trata da análise, desenvolvimento e implementação de um Pré-Regulador de fator de potência com controlo digital. O controlo digital de conversores com recurso a processamento digital de sinal tem vindo a ser ao longo dos últimos anos, objeto de investigação e desenvolvimento, estando constantemente a surgirem modificações nas topologias existentes. Esta dissertação tem como objetivo estudar e implementar um Pré-Regulador Retificador Boost e o respetivo controlo digital. O controlo do conversor é feito através da técnica dos valores médios instantâneos da corrente de entrada, desenvolvido através da linguagem de descrição de hardware VHDL (VHSIC HDL – Very High Speed Integrated Circuit Hardware Description Language) e implementado num dispositivo FPGA (Field Programmable Gate Array) Spartan-3E. Neste trabalho são apresentadas análises matemáticas, para a obtenção das funções de transferência pertinentes ao projeto dos controladores. Para efetuar este controlo é necessário adquirir os sinais da corrente de entrada, tensão de entrada e tensão de saída. O sinal resultante do módulo de controlo é um sinal de PWM com valor de fator de ciclo variável ao longo do tempo. O projeto é simulado e validado através da plataforma MatLab/Simulink e PSIM, onde são apresentados resultados para o regime permanente e para transitórios da carga e da tensão de alimentação. Finalmente, o Pré-Regulador Retificador Boost controlado de forma digital é implementado em laboratório. Os resultados experimentais são apresentados para validar a metodologia e o projeto desenvolvidos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quimica Nova, Vol. 32, Nº2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master in Biomedical Engineering