976 resultados para Sequential machine theory.
Resumo:
In this paper, a novel approach for mandarin speech emotion recognition, that is mandarin speech emotion recognition based on high dimensional geometry theory, is proposed. The human emotions are classified into 6 archetypal classes: fear, anger, happiness, sadness, surprise and disgust. According to the characteristics of these emotional speech signals, the amplitude, pitch frequency and formant are used as the feature parameters for speech emotion recognition. The new method called high dimensional geometry theory is applied for recognition. Compared with traditional GSVM model, the new method has some advantages. It is noted that this method has significant values for researches and applications henceforth.
Resumo:
The concept of traces has been introduced for describing non-sequential behaviour of concurrent systems via its sequential observations. Traces represent concurrent processes in the same way as strings represent sequential ones. The theory of traces can be used as a tool for reasoning about nets and it is hoped that applying this theory one can get a calculus of the concurrent processes anologous to that available for sequential systems. The following topics will be discussed: algebraic properties of traces, trace models of some concurrency phenomena, fixed-point calculus for finding the behaviour of nets, modularity, and some applications of the presented theory.
Resumo:
A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used.
Resumo:
How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.
Resumo:
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
Resumo:
This paper describes a methodology for detecting anomalies from sequentially observed and potentially noisy data. The proposed approach consists of two main elements: 1) filtering, or assigning a belief or likelihood to each successive measurement based upon our ability to predict it from previous noisy observations and 2) hedging, or flagging potential anomalies by comparing the current belief against a time-varying and data-adaptive threshold. The threshold is adjusted based on the available feedback from an end user. Our algorithms, which combine universal prediction with recent work on online convex programming, do not require computing posterior distributions given all current observations and involve simple primal-dual parameter updates. At the heart of the proposed approach lie exponential-family models which can be used in a wide variety of contexts and applications, and which yield methods that achieve sublinear per-round regret against both static and slowly varying product distributions with marginals drawn from the same exponential family. Moreover, the regret against static distributions coincides with the minimax value of the corresponding online strongly convex game. We also prove bounds on the number of mistakes made during the hedging step relative to the best offline choice of the threshold with access to all estimated beliefs and feedback signals. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality, as well as on the Enron email dataset. © 1963-2012 IEEE.
Resumo:
Progress in the theoretical understanding of non-sequential double-ionization of atoms is reviewed from its beginnings with Kuchiev's work in the late 1980s and Corkum's work in the early 1990s to the present day. The crucial role of laboratory experiment as a persistent stimulus to theoretical endeavour is underlined but the predictive roles of simple, yet fundamental, theory and also of a full quantum mechanical description are not forgotten. A theoretical forward look is provided.
Resumo:
We have developed a two-electron outer region for use within R-matrix theory to describe double ionisation processes. The capability of this method is demonstrated for single-photon double ionisation of He in the photon energy region between 80 eV to 180 eV. The cross sections are in agreement with established data. The extended RMT method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionisation processes involving an intermediate He+ state with n=2.
Resumo:
Taking in recent advances in neuroscience and digital technology, Gander and Garland assess the state of the inter-arts in America and the Western world, exploring and questioning the primacy of affect in an increasingly hypertextual everyday environment. In this analysis they signal a move beyond W. J. T. Mitchell’s coinage of the ‘imagetext’ to an approach that centres the reader-viewer in a recognition, after John Dewey, of ‘art as experience’. New thinking in cognitive and computer sciences about the relationship between the body and the mind challenges any established definitions of ‘embodiment’, ‘materiality’, ‘virtuality’ and even ‘intelligence, they argue, whilst ‘Extended Mind Theory, they note, marries our cognitive processes with the material forms with which we engage, confirming and complicating Marshall McLuhan’s insight, decades ago, that ‘all media are “extensions of man”’. In this chapter, Gander and Garland open paths and suggest directions into understandings and critical interpretations of new and emerging imagetext worlds and experiences.
Resumo:
With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed.
In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-defined portion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first mode as a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.
Resumo:
We present a new wrapper feature selection algorithm for human detection. This algorithm is a hybrid featureselection approach combining the benefits of filter and wrapper methods. It allows the selection of an optimalfeature vector that well represents the shapes of the subjects in the images. In detail, the proposed featureselection algorithm adopts the k-fold subsampling and sequential backward elimination approach, while thestandard linear support vector machine (SVM) is used as the classifier for human detection. We apply theproposed algorithm to the publicly accessible INRIA and ETH pedestrian full image datasets with the PASCALVOC evaluation criteria. Compared to other state of the arts algorithms, our feature selection based approachcan improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy.Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach witharound 9% improvement in the detection accuracy
Resumo:
Narrative therapy is a postmodern therapy that takes the position that people create self-narratives to make sense of their experiences. To date, narrative therapy has compiled virtually no quantitative and very little qualitative research, leaving gaps in almost all areas of process and outcome. White (2006a), one of the therapy's founders, has recently utilized Vygotsky's (1934/1987) theories of the zone of proximal development (ZPD) and concept formation to describe the process of change in narrative therapy with children. In collaboration with the child client, the narrative therapist formalizes therapeutic concepts and submits them to increasing levels of generalization to create a ZPD. This study sought to determine whether the child's development proceeds through the stages of concept formation over the course of a session, and whether therapists' utterances scaffold this movement. A sequential analysis was used due to its unique ability to measure dynamic processes in social interactions. Stages of concept formation and scaffolding were coded over time. A hierarchical log-linear analysis was performed on the sequential data to develop a model of therapist scaffolding and child concept development. This was intended to determine what patterns occur and whether the stated intent of narrative therapy matches its actual process. In accordance with narrative therapy theory, the log-linear analysis produced a final model with interactions between therapist and child utterances, and between both therapist and child utterances and time. Specifically, the child and youth participants in therapy tended to respond to therapist scaffolding at the corresponding level of concept formation. Both children and youth and therapists also tended to move away from earlier and toward later stages of White's scaffolding conversations map as the therapy session advanced. These findings provide support for White's contention that narrative therapists promote child development by scaffolding child concept formation in therapy.
Resumo:
We introduce a procedure to infer the repeated-game strategies that generate actions in experimental choice data. We apply the technique to set of experiments where human subjects play a repeated Prisoner's Dilemma. The technique suggests that two types of strategies underly the data.