910 resultados para Semigroup of linear operators
Resumo:
We extend and provide a vector-valued version of some results of C. Samuel about the geometric relations between the spaces of nuclear operators N(E, F) and spaces of compact operators K(E, F), where E and F are Banach spaces C(K) of all continuous functions defined on the countable compact metric spaces K equipped with the supremum norm. First we continue Samuel's work by proving that N(C(K-1), C(K-2)) contains no subspace isomorphic to K(C(K-3), C(K-4)) whenever K-1, K-2, K-3 and K-4 are arbitrary infinite countable compact metric spaces. Then we show that it is relatively consistent with ZFC that the above result and the main results of Samuel can be extended to C(K-1, X), C(K-2,Y), C(K-3, X) and C(K-4, Y) spaces, where K-1, K-2, K-3 and K-4 are arbitrary infinite totally ordered compact spaces; X comprises certain Banach spaces such that X* are isomorphic to subspaces of l(1); and Y comprises arbitrary subspaces of l(p), with 1 < p < infinity. Our results cover the cases of some non-classical Banach spaces X constructed by Alspach, by Alspach and Benyamini, by Benyamini and Lindenstrauss, by Bourgain and Delbaen and also by Argyros and Haydon.
Resumo:
Background: Although linear growth during childhood may be affected by early-life exposures, few studies have examined whether the effects of these exposures linger on during school age, particularly in low-and middle-income countries. Methods: We conducted a population-based longitudinal study of 256 children living in the Brazilian Amazon, aged 0.1 y to 5.5 y in 2003. Data regarding socioeconomic and maternal characteristics, infant feeding practices, morbidities, and birth weight and length were collected at baseline of the study (2003). Child body length/height was measured at baseline and at follow-up visits (in 2007 and 2009). Restricted cubic splines were used to construct average height-for-age Z score (HAZ) growth curves, yielding estimated HAZ differences among exposure categories at ages 0.5 y, 1 y, 2 y, 5 y, 7 y, and 10 y. Results: At baseline, median age was 2.6 y (interquartile range, 1.4 y-3.8 y), and mean HAZ was -0.53 (standard deviation, 1.15); 10.2% of children were stunted. In multivariable analysis, children in households above the household wealth index median were 0.30 Z taller at age 5 y (P = 0.017), and children whose families owned land were 0.34 Z taller by age 10 y (P = 0.023), when compared with poorer children. Mothers in the highest tertile for height had children whose HAZ were significantly higher compared with those of children from mothers in the lowest height tertile at all ages. Birth weight and length were positively related to linear growth throughout childhood; by age 10 y, children weighing >3500 g at birth were 0.31 Z taller than those weighing 2501 g to 3500 g (P = 0.022) at birth, and children measuring >= 51 cm at birth were 0.51 Z taller than those measuring <= 48 cm (P = 0.005). Conclusions: Results suggest socioeconomic background is a potentially modifiable predictor of linear growth during the school-aged years. Maternal height and child's anthropometric characteristics at birth are positively associated with HAZ up until child age 10 y.
Resumo:
Abstract Background Decreased heart rate variability (HRV) is related to higher morbidity and mortality. In this study we evaluated the linear and nonlinear indices of the HRV in stable angina patients submitted to coronary angiography. Methods We studied 77 unselected patients for elective coronary angiography, which were divided into two groups: coronary artery disease (CAD) and non-CAD groups. For analysis of HRV indices, HRV was recorded beat by beat with the volunteers in the supine position for 40 minutes. We analyzed the linear indices in the time (SDNN [standard deviation of normal to normal], NN50 [total number of adjacent RR intervals with a difference of duration greater than 50ms] and RMSSD [root-mean square of differences]) and frequency domains ultra-low frequency (ULF) ≤ 0,003 Hz, very low frequency (VLF) 0,003 – 0,04 Hz, low frequency (LF) (0.04–0.15 Hz), and high frequency (HF) (0.15–0.40 Hz) as well as the ratio between LF and HF components (LF/HF). In relation to the nonlinear indices we evaluated SD1, SD2, SD1/SD2, approximate entropy (−ApEn), α1, α2, Lyapunov Exponent, Hurst Exponent, autocorrelation and dimension correlation. The definition of the cutoff point of the variables for predictive tests was obtained by the Receiver Operating Characteristic curve (ROC). The area under the ROC curve was calculated by the extended trapezoidal rule, assuming as relevant areas under the curve ≥ 0.650. Results Coronary arterial disease patients presented reduced values of SDNN, RMSSD, NN50, HF, SD1, SD2 and -ApEn. HF ≤ 66 ms2, RMSSD ≤ 23.9 ms, ApEn ≤−0.296 and NN50 ≤ 16 presented the best discriminatory power for the presence of significant coronary obstruction. Conclusion We suggest the use of Heart Rate Variability Analysis in linear and nonlinear domains, for prognostic purposes in patients with stable angina pectoris, in view of their overall impairment.
Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Resumo:
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.
Resumo:
In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the inference problem is the posterior distribution of this parameter. A regular version of the posterior distribution in functional spaces is characterized. However, the infinite dimension of the considered spaces causes a problem of non continuity of the solution and then a problem of inconsistency, from a frequentist point of view, of the posterior distribution (i.e. problem of ill-posedness). The contribution of this essay is to propose new methods to deal with this problem of ill-posedness. The first one consists in adopting a Tikhonov regularization scheme in the construction of the posterior distribution so that I end up with a new object that I call regularized posterior distribution and that I guess it is solution of the inverse problem. The second approach consists in specifying a prior distribution on the parameter of interest of the g-prior type. Then, I detect a class of models for which the prior distribution is able to correct for the ill-posedness also in infinite dimensional problems. I study asymptotic properties of these proposed solutions and I prove that, under some regularity condition satisfied by the true value of the parameter of interest, they are consistent in a "frequentist" sense. Once I have set the general theory, I apply my bayesian nonparametric methodology to different estimation problems. First, I apply this estimator to deconvolution and to hazard rate, density and regression estimation. Then, I consider the estimation of an Instrumental Regression that is useful in micro-econometrics when we have to deal with problems of endogeneity. Finally, I develop an application in finance: I get the bayesian estimator for the equilibrium asset pricing functional by using the Euler equation defined in the Lucas'(1978) tree-type models.
Resumo:
The collapse of linear polyelectrolyte chains in a poor solvent: When does a collapsing polyelectrolyte collect its counter ions? The collapse of polyions in a poor solvent is a complex system and is an active research subject in the theoretical polyelectrolyte community. The complexity is due to the subtle interplay between hydrophobic effects, electrostatic interactions, entropy elasticity, intrinsic excluded volume as well as specific counter-ion and co-ion properties. Long range Coulomb forces can obscure single molecule properties. The here presented approach is to use just a small amount of screening salt in combination with a very high sample dilution in order to screen intermolecular interaction whereas keeping intramolecular interaction as much as possible (polyelectrolyte concentration cp ≤ 12 mg/L, salt concentration; Cs = 10^-5 mol/L). This is so far not described in literature. During collapse, the polyion is subject to a drastic change in size along with strong reduction of free counterions in solution. Therefore light scattering was utilized to obtain the size of the polyion whereas a conductivity setup was developed to monitor the proceeding of counterion collection by the polyion. Partially quaternized PVP’s below and above the Manning limit were investigated and compared to the collapse of their uncharged precursor. The collapses were induced by an isorefractive solvent/non-solvent mixture consisting of 1-propanol and 2-pentanone, with nearly constant dielectric constant. The solvent quality for the uncharged polyion could be quantified which, for the first time, allowed the experimental investigation of the effect of electrostatic interaction prior and during polyion collapse. Given that the Manning parameter M for QPVP4.3 is as low as lB / c = 0.6 (lB the Bjerrum length and c the mean contour distance between two charges), no counterion binding should occur. However the Walden product reduces with first addition of non solvent and accelerates when the structural collapse sets in. Since the dielectric constant of the solvent remains virtually constant during the chain collapse, the counterion binding is entirely caused by the reduction in the polyion chain dimension. The collapse is shifted to lower wns with higher degrees of quaternization as the samples QPVP20 and QPVP35 show (M = 2.8 respectively 4.9). The combination of light scattering and conductivity measurement revealed for the first time that polyion chains already collect their counter ions well above the theta-dimension when the dimensions start to shrink. Due to only small amounts of screening salt, strong electrostatic interactions bias dynamic as well as static light scattering measurements. An extended Zimm formula was derived to account for this interaction and to obtain the real chain dimensions. The effective degree of dissociation g could be obtained semi quantitatively using this extrapolated static in combination with conductivity measurements. One can conclude the expansion factor a and the effective degree of ionization of the polyion to be mutually dependent. In the good solvent regime g of QPVP4.3, QPVP20 and QPVP35 exhibited a decreasing value in the order 1 > g4.3 > g20 > g35. The low values of g for QPVP20 and QPVP35 are assumed to be responsible for the prior collapse of the higher quaternized samples. Collapse theory predicts dipole-dipole attraction to increase accordingly and even predicts a collapse in the good solvent regime. This could be exactly observed for the QPVP35 sample. The experimental results were compared to a newly developed theory of uniform spherical collapse induced by concomitant counterion binding developed by M. Muthukumar and A. Kundagrami. The theory agrees qualitatively with the location of the phase boundary as well as the trend of an increasing expansion with an increase of the degree of quaternization. However experimental determined g for the samples QPVP4.3, QPVP20 and QPVP35 decreases linearly with the degree of quaternization whereas this theory predicts an almost constant value.
Resumo:
Linear and macrocyclic nitrogen ligands have been found wide application during the years. Nitrogen has a much strong association with transition-metal ions because the electron pair is partucularly available for complexing purposes. We started our investigation with the synthesis of new chiral perazamacrocycles containing four pyrrole rings. This ligand was synthesized by the [2+2]condensation of (R,R)-diaminocyclohexane and dipirranedialdehydes and was tested, after a complexation with Cu(OAc)2, in Henry reactions. The best yields (96%) and higher ee’s (96%) were obtained when the meso-substituent on the dipyrrandialdehyde was a methyl group. The positive influence of the pyrrole-containing macrocyclic structure on the efficiency/enantioselectivity of the catalytic system was demonstrated by comparison with the Henry reactions performed using analogous ligands. Henry product was obtain in good yield but only 73% of ee, when the dialdehyde unit was replaced by a triheteroaromatic dialdehye (furan-pyrrol-furan). Another well known macrocyclic ligand is calix[4]pyrrole. We decided to investigate, in collaboration with Neier’s group, the metal-coordinating properties of calix[2]pyrrole[2]pyrrolidine compounds obtained by the reduction of calix[4]pyrrole. We focused our attention on the reduction conditions, and tested different Pd supported (charcoal, grafite) catalysts at different condition. Concerning the synthesis of linear polyamine ligands. We focused our attention to the synthesis of 2-heteroaryl- and 2,5-diheteroarylpyrrolidines. The reductive amination reaction of diarylketones and aryl-substitutedketo-aldehydes with different chiral amines was exploited to prepare a small library of diastereo-enriched substituted pyrrolidines. We have also described a new synthetic route to 1,2-disubstituted 1,2,3,4-tetrahydropyrrole[1,2-a]pyrazines, which involves the diastereoselective addition of Grignard reagents to chiral oxazolidines. The best diastereoselectivity (98:2) was dependent on the nature of both the chiral auxiliary, (S)-1-phenylglycinol, and the nature of the organometallic reagent (MeMgBr).
Resumo:
The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.
Resumo:
Shell structure is widely used in engineering area. The purpose of this dissertation is to show the behavior of a thin shell under external load, especially for long cylindrical shell under compressive load, I analyzed not only for linear elastic problem and also for buckling problem, and by using finite element analysis it shows that the imperfection of a cylinder could affect the critical load which means the buckling capability of this cylinder. For linear elastic problem, I compared the theoretical results with the results got from Straus7 and Abaqus, and the results are really close. For the buckling problem I did the same: compared the theoretical and Abaqus results, the error is less than 1%, but in reality, it’s not possible to reach the theoretical buckling capability due to the imperfection of the cylinder, so I put different imperfection for the cylinder in Abaqus, and found out that with the increasing of the percentage of imperfection, the buckling capability decreases, for example 10% imperfection could decrease 40% of the buckling capability, and the outcome meet the buckling behavior in reality.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Resumo:
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease of the skin associated with IgG autoantibodies to BP180 and BP230, while mucous membrane pemphigoid (MMP) comprises a heterogeneous group of autoimmune blistering diseases characterized by a predominant mucous membrane involvement and scarring tendency associated with an autoantibody response to various autoantigens, including BP180. While the pathogenicity of IgG autoantibodies to BP180 has been demonstrated in BP, the role of IgE autoantibodies in mediating tissue damage in BP and MMP is unclear.
Resumo:
Overlap syndromes represent disorders that combine diagnostic criteria of two or more different connective tissue diseases.