1000 resultados para Revistas de Matemática
Resumo:
Neste artigo faz-se referência aos números amigos, estudados desde a antiguidade, e como podemos encontrá-los, bem como uma referência aos números sociáveis.
Resumo:
Neste artigo apresentamos algumas poesias cujo tema central é a matemática.
Resumo:
Neste artigo apresentam-se algumas configurações matemáticas que sugerem flores e borboletas, fazendo-se uma breve explicação de como podemos obtê-las.
Resumo:
Este artigo apresenta parte de um estudo, em desenvolvimento, que visa compreender a natureza do trabalho de projeto, os pressupostos que lhe subjazem e analisar as capacidades matemáticas e as competências democráticas que são desenvolvidas ao trabalhar de uma forma integrada. No âmbito de uma abordagem qualitativa, o campo empírico do estudo incidiu num projeto desenvolvido por um grupo de quatro alunas do 3.º ano do Ensino Básico, que problematizou qual o tarifário mais económico, face às novas ofertas no mercado do fornecimento da energia elétrica. Os resultados apresentados sugerem o desenvolvimento, nas alunas, do sentido de número, ao envolverem-se em problemas autênticos da sua vida real, e de uma competência crítica na compreensão do uso social da matemática.
Resumo:
Este artigo discute o papel da valorização das interações sociais entre os alunos e o professor no desenvolvimento de modos de comunicação e de padrões de interação centrados nos conhecimentos matemáticos individuais dos alunos. Os dados foram recolhidos por mim, em contexto de trabalho colaborativo, com três professoras do 1.º ciclo do ensino básico, assumindo uma perspetiva interpretativa da ação e significação das professoras das conceções e práticas de comunicação matemática na sala de aula. O desenvolvimento das interações entre os próprios alunos e entre estes e as professoras, juntamente com o reconhecimento da singularidade dos conhecimentos matemáticos dos alunos, favoreceram a existência dos modos de comunicação reflexiva e instrutiva e dos padrões de extração e de discussão na comunicação matemática na sala de aula, gerando um sentido de responsabilidade coletiva sobre a aprendizagem da matemática e no reconhecimento do conhecimento do outro (aluno e professor).
Resumo:
Neste artigo apresento uma análise do Programa de Formação Contínua em Matemática, que se desenvolveu em Portugal de 2005 a 2011. Começo por abordar a formação de professores que ensinam Matemática, tendo por base resultados da investigação que serviram de suporte para a definição do Programa de Formação Contínua em Matemática (PFCM). Serão depois analisados os dados do PFCM em termos do envolvimento dos professores do 1.º ciclo a quem ele se destinava. Faz-se uma avaliação da formação a partir de testemunhos dos formandos inseridos nos relatórios institucionais e/ou nos seus portefólios, para concluir que as características da formação foram determinantes para o aumento da confiança dos professores envolvidos e, em consequência, para a melhoria da aprendizagem da Matemática dos nossos alunos. Por fim, referem-se os resultados do TIMSS 2011, que vêm corroborar a afirmação feita anteriormente. Uma ideia forte que se transmite é a de que a formação contínua de professores tem de ter uma estreita ligação com a prática letiva
Resumo:
Este artigo tem como foco o uso de casos multimédia na formação inicial de professores e procura analisar o seu contributo para o desenvolvimento do conhecimento didático de futuras professoras acerca do ensino exploratório da Matemática, bem como apreciar as suas perspetivas sobre as mais-valias do caso multimédia utilizado como recurso formativo. Analisam-se questionários e relatórios de treze alunas do Mestrado em Educação Pré-Escolar e Ensino do 1.º Ciclo da Universidade de Évora, que trabalharam sobre um caso multimédia que retrata a prática de ensino de uma professora de 1º ciclo. O caso inclui recursos diversificados, sendo os vídeos de sala de aula complementados com o plano da aula, as resoluções da tarefa pelos alunos, as reflexões da professora sobre a sua prática, um quadro de referência sobre o ensino exploratório da Matemática e artigos teóricos sobre ensino de natureza exploratória da Matemática. As alunas em formação apreciaram conhecer e explorar o caso multimédia, ressaltando a possibilidade de através dele conhecerem uma nova prática real de ensino da Matemática; sublinharam a importância de ouvirem as reflexões da professora para dotar de sentido a respetiva prática, revelando as intenções das suas ações; aprenderam também conhecimentos relevantes para pôr em prática o ensino exploratório, nomeadamente relativos ao conhecimento do processo instrucional, tanto no diz respeito à planificação, como à condução da aula.
Resumo:
[...] Há quem seja mais habilidoso e faça questão de oferecer prendas embrulhadas a preceito e há quem seja mais prático e despachado. De uma maneira ou de outra, poupar nos materiais utilizados (nomeadamente, no papel de embrulho e na fita adesiva) parece ser uma boa ideia nos dias que correm. Neste artigo, mostramos como podemos embrulhar um presente de Natal de modo a poupar no papel de embrulho e na fita adesiva e, simultaneamente, a produzir uma bonita embalagem. E tudo isto com a ajuda da Matemática! [...]
Resumo:
Este trabalho constitui um resumo documentado de algumas ideias-chave sobre os números, normalmente tratadas no pré-escolar. O texto, além de poder ser lido por investigadores ligados a esta área, foi escrito de forma a constituir um documento de apoio com interesse para os profissionais que estão "no terreno" (educadores, auxiliares, entre outros) e uma fonte de consulta para pais, encarregados de educação e todos aqueles que se interessam por crianças (no fundo, quase todos nós). Os assuntos tratados, basicamente relativos à primeira dezena e subdivididos nas temáticas "Cardinalidade", "Numerais" e "Ordinalidade", são fundamentados com estudos e opiniões de matemáticos, psicólogos e neurocientistas. Além disso, teve-se em conta o contributo, igualmente importante, de inúmeros educadores que partilharam o seu olhar e a sua experiência. Sendo assim, além da abordagem teórica, são apresentados bastantes exemplos práticos e alguma multimédia.
Resumo:
21º Workshop da APDR. Estratégias, Infra-estruturas e Redes Empreendedoras para o Desenvolvimento Regional, 27 de Novembro de 2014, Oeiras, Lisboa.
Resumo:
Dissertação apresentada para obtenção do grau de Mestre em Educação Matemática na Educação Pré-Escolar e nos 1º e 2º Ciclos do Ensino Básico na especialidade de Didática da Matemática
Resumo:
(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)
Resumo:
Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)
Resumo:
(...) O leitor que já possua Cartão de Cidadão poderá constatar que o algarismo suplementar do BI continua a marcar presença no novo documento: surge à frente do antigo número do BI, que se passou a designar por Número de Identificação Civil (NIC), imediatamente antes de duas letras. Mas qual é o papel deste algarismo? Na verdade, o algarismo suplementar não é assim tão misterioso. É simplesmente um algarismo de controlo ou dígito de verificação (check digit), que tem como objetivo detetar erros que possam ocorrer na escrita ou leitura do número do BI. Apresente-se como exemplo o número 6235008 0, em que 0 é o algarismo suplementar. (...) Ficam assim desvendados alguns dos mistérios do Cartão de Cidadão. Mas podemos não ficar por aqui: isto porque o Número de Identificação da Segurança Social (NISS), disponível no verso do Cartão de Cidadão, também é um número de identificação com algarismo de controlo! E o curioso é que se utilizam números primos para o cálculo da soma de teste (chama-se primo a todo o número natural superior a um que tenha apenas dois divisores naturais distintos, o número um e ele próprio). Concretamente, utilizam-se os primeiros dez números primos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. (...)
Resumo:
(...) Existem diferentes tipos de sistemas de identificação com check digit. A escolha do algoritmo a implementar deve satisfazer dois princípios: por um lado, é importante escolher um sistema eficaz que detete o maior número possível de erros; por outro lado, a sua utilização no terreno deve ser de alguma forma acessível, particularmente para quem tem de lidar diariamente com os números produzidos por esse algoritmo. Hoje em dia a utilização de meios eletrónicos revela-se muito eficaz, quer para gerar o algarismo de controlo de novos números, como para validar números que já se encontrem em circulação. Mesmo assim, há uma série de requisitos importantes a ter em conta quando se pretende implementar um novo sistema de identificação. Desde logo, a escolha do alfabeto, ou seja, dos símbolos a utilizar. Normalmente, opta-se por recorrer apenas aos dez algarismos vulgarmente utilizados, do 0 ao 9. É o caso do exemplo que se segue. O método desenvolvido pela IBM, também conhecido por algoritmo de Luhn, aplica-se à generalidade dos cartões de crédito: VISA e VISA Electron (em que o primeiro algarismo da esquerda é um 4), MarterCard (5), American Express (3) e Discover (6), entre outros. Considere-se o número de um cartão VISA: 4188 3600 4538 6426. Como é habitual, o algarismo de controlo é o primeiro algarismo da direita, ou seja, o algarismo das unidades (6). Para verificar se este número é válido, procede-se da seguinte forma (...). Há um algoritmo mais eficaz, desenvolvido por Verhoeff em 1969, que utiliza os mesmos símbolos (os algarismos do 0 a 9). Este sistema deteta 100% dos erros singulares, 100% das transposições de algarismos adjacentes e algumas das transposições intercaladas. Paradoxalmente, é um método pouco utilizado, talvez por necessitar de uma maior bagagem matemática.(...) Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201034571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...) Se nos predispusermos a alargar o alfabeto de símbolos ou a considerar mais de um algarismo de controlo, podemos obter algoritmos ainda mais eficazes na deteção de erros. É o caso dos algoritmos estabelecidos pela norma ISO/IEC 7064. Por exemplo, o algoritmo MOD 11-2 é utilizado para identificar as receitas médicas em Portugal e utiliza um símbolo adicional (o X, que representa o número 10). Já o algoritmo MOD 97-10 requer a utilização de dois algarismos de controlo e é empregue na emissão do Número de Identificação Bancária (NIB). (...)