942 resultados para R-CLOSED SPACE
Resumo:
A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
Earlier work has suggested that large-scale dynamos can reach and maintain equipartition field strengths on a dynamical time scale only if magnetic helicity of the fluctuating field can be shed from the domain through open boundaries. To test this scenario in convection-driven dynamos by comparing results for open and closed boundary conditions. Three-dimensional numerical simulations of turbulent compressible convection with shear and rotation are used to study the effects of boundary conditions on the excitation and saturation level of large-scale dynamos. Open (vertical field) and closed (perfect conductor) boundary conditions are used for the magnetic field. The contours of shear are vertical, crossing the outer surface, and are thus ideally suited for driving a shear-induced magnetic helicity flux. We find that for given shear and rotation rate, the growth rate of the magnetic field is larger if open boundary conditions are used. The growth rate first increases for small magnetic Reynolds number, Rm, but then levels off at an approximately constant value for intermediate values of Rm. For large enough Rm, a small-scale dynamo is excited and the growth rate in this regime increases proportional to Rm^(1/2). In the nonlinear regime, the saturation level of the energy of the mean magnetic field is independent of Rm when open boundaries are used. In the case of perfect conductor boundaries, the saturation level first increases as a function of Rm, but then decreases proportional to Rm^(-1) for Rm > 30, indicative of catastrophic quenching. These results suggest that the shear-induced magnetic helicity flux is efficient in alleviating catastrophic quenching when open boundaries are used. The horizontally averaged mean field is still weakly decreasing as a function of Rm even for open boundaries.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Research on cross-cultural and intercultural aspects in organizations has been traditionally conducted from an objectivist, functionalist perspective, with culture treated as an independent variable, and often the key explanatory factor. In order to do justice to the ontological relativity of the phenomena studied, more subjectivist research on intercultural interactions, and especially on their relationships with the dynamics of cultural identity construction, is needed. The present research seeks to address this gap by focusing on bicultural interactions in organizations, as they are experienced by the involved individuals. It is argued that such bicultural situations see the emergence of a space of hybridity, which is here called a ‘third space’, and which can be understood as providing ‘occasions for sensemaking’: it is this individual sensemaking that is of particular interest in the empirical narrative study. A first overall aim of the study is to reach an understanding of the dynamics of bicultural interactions in organizations; an understanding not only of the potential for learning and emancipatory sensemaking, but also of the possibility of conflict and alienatory ordering (this is mainly addressed in the theoretical essays 1 and 2). Further, a second overall aim of the study is to analyze the reflexive identity construction of four young French expatriates involved in such bicultural interactions in organizations in Finland, in order to examine the extent to which their expatriation experiences have allowed for an emancipatory opportunity in their cases (in essays 3 and 4). The primary theoretical contribution in this study lies in its new articulation of the dynamics of bicultural interactions in organizations. The ways in which the empirical material is analyzed bring about methodological contributions: since the expatriates’ accounts are bound to be some kind of construction, the analysis is made from angles that point to how the self-narratives construct reality. There are two such angles here: a ‘performative’ one and a ‘spatial’ one. The most important empirical contributions lie in the analysis of, on the one hand, the alternative uses that the young expatriates made of the notion of ‘national culture’ in their self-narratives, and, on the other hand, their ‘narrative practices of the third space’: their politics of escape or stabilization, their exploration of space or search for place, their emancipation from their origin or return to home as only horizon.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
Thiosemicarbazones are having the ability to bind with metal and inhibit the enzyme ribonucleoside diphosphate reductase(RDR),an enzyme which is involved in the synthesis of DNA precursors in the mammalian cells.The title compound N-methyl-t-3-methyl-r-2, c-6-diphenylpiperidin-4-one thiosemicarbazone (NMMDPT), CCDC 218052, was prepared using Mannich reaction and characterized by X-ray diffraction methods.The crystal data are:C20H24N4S; M.W= 352.49, triclinic,space group P (1) over bar, a = 8.467(2)angstrom, b = 10.228(2)angstrom, c = 12.249(2)angstrom; lpha=92.595(3)degrees, beta=104.173(3)degrees, gamma=13.628(3)degrees; V=930.0(3)angstrom(3), Z=2, D-cal=1.259Mgm(-3),mu=0.184mm(-1),lambda (MoKalpha)=0.71073 angstrom, final R1 and wR2 are 0.0470 and 0.1052, respectively. The piperidine rings adopt chair conformation. The planar phenyl rings are oriented equatorially at 2,6-positions of the piperidine ring. The molecular packing can be viewed as dimers held together by two N-H...S types of intermolecular hydrogen bonds. Weak C-H...pi interactions also support the stability of the molecules in the crystal in addition to van der Waals forces. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A one-dimensional arbitrary system with quantum Hamiltonian H(q, p) is shown to acquire the 'geometric' phase gamma (C)=(1/2) contour integral c(Podqo-qodpo) under adiabatic transport q to q+q+qo(t) and p to p+po(t) along a closed circuit C in the parameter space (qo(t), po(t)). The non-vanishing nature of this phase, despite only one degree of freedom (q), is due ultimately to the underlying non-Abelian Weyl group. A physical realisation in which this Berry phase results in a line spread is briefly discussed.
Resumo:
Home Economics Classrooms as Part of Developing the Environment Housing Activities and Curriculums Defining Change --- The aim of the research project was to develop home economics classrooms to be flexible and versatile learning environments where household activities might be practiced according to the curriculum in different social networking situations. The research is based on the socio-cultural approach, where the functionality of the learning environment is studied specifically from an interactive learning viewpoint. The social framework is a natural starting point in home economics teaching because of the group work in classrooms. The social nature of learning thus becomes a significant part of the learning process. The study considers learning as experience based, holistic and context bound. The learning environment, i.e. home economics classrooms and the material tools there, plays a significant role in developing students skills to manage everyday life. --- The first research task was to analyze the historical development of household activities. The second research task was to develop and test criteria for functional home economics classrooms in planning both the learning environment and the students activities during lessons. The third research task was to evaluate how different professionals (commissioners, planners and teachers) use the criteria as a tool. The research consists of three parts. The first contains a historical analysis of how social changes have created tension between traditional household classrooms and new activities in homes. The historical analysis is based on housing research, regulations and instructions. For this purpose a new theoretical concept, the tension arch, was introduced. This helped in recognizing and solving problems in students activities and in developing innovations. The functionality criteria for home economics classrooms were developed based on this concept. These include technical (health, safety and technical factors), functional (ergonomic, ecological, aesthetic and economic factors) and behavioural (cooperation and interaction skills and communication technologies) criteria. --- The second part discusses how the criteria were used in renovating school buildings. Empirical data was collected from two separate schools where the activities during lessons were recorded both before and after classrooms were renovated. An analysis of both environments based on video recordings was conducted. The previously created criteria were made use of, and problematic points in functionality looked for particularly from a social interactive viewpoint. The results show that the criteria were used as a planning tool. The criteria facilitated layout and equipment solutions that support both curriculum and learning in home economics classrooms taking into consideration cooperation and interaction in the classroom. With the help of the criteria the home economics classrooms changed from closed and complicated space into integrated and open spaces where the flexibility and versatility of the learning environment was emphasized. The teacher became a facilitator and counselor instead a classroom controller. --- The third part analyses the discussions in planning meetings. These were recorded and an analysis was conducted of how the criteria and research results were used in the planning process of new home economics classrooms. The planning process was multivoiced, i.e. actors from different interest groups took part. All the previously created criteria (technical, functional and behavioural) emerged in the discussions and some of them were used as planning tools. Planning meetings turned into planning studios where boundaries between organizations were ignored and the physical learning environments were developed together with experts. The planning studios resulted in multivoiced planning which showed characteristics of collaborative and participating planning as well as producing common knowledge and shared expertise. --- KEY WORDS: physical learning environment, socio-cultural approach, tension arch, boundary crossing, collaborative planning.
Resumo:
We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The method of least squares could be used to refine an imperfectly related trial structure by adoption of one of the following two procedures: (i) using all the observed at one time or (ii) successive refinement in stages with data of increasing resolution. While the former procedure is successful in the case of trial structures which are sufficiently accurate, only the latter has been found to be successful when the mean positional error (i.e.<|[Delta]r|>) for the atoms in the trial structure is large. This paper makes a theoretical study of the variation of the R index, mean phase-angle error, etc. as a function of <|[Delta]r|> for data corresponding to different esolutions in order to find the best refinement procedure [i.e. (i) or (ii)] which could be successfully employed for refining trial structures in which <|[Delta]r|> has large, medium and low values. It is found that a trial structure for which the mean positional error is large could be refined only by the method of successive refinement with data of increasing resolution.
Resumo:
In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.
Resumo:
A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.