983 resultados para Pre-Salt
Resumo:
A continuing challenge for pre-service teacher education is the learning transfer between the university based components and the practical school based components of their training. It is not clear how easily pre-service teachers can transfer university learnings into ‘in school’ practice. Similarly, it is not clear how easily knowledge learned in the school context can be disembedded from this particular context and understood more generally by the pre-service teacher. This paper examines the effect of a community of practice formed specifically to explore learning transfer via collaboration and professional enquiry, in ‘real time’, across the globe. “Activity Theory” (Engestrom, 1999) provided the theoretical framework through which the cognitive, physical and social processes involved could be understood. For the study, three activity systems formed community of practice network. The first activity system involved pre-service teachers at a large university in Queensland, Australia. The second activity system was introduced by the pre-service teachers and involved Year 12 students and teachers at a private secondary school also in Queensland, Australia. The third activity system involved university staff engineers at a large university in Pennsylvania, USA. The common object among the three activity systems was to explore the principles and applications of nanotechnology. The participants in the two Queensland activity systems, controlled laboratory equipment (a high powered Atomic Force Microscope – CPII) in Pennsylvania, USA, with the aim of investigating surface topography and the properties of nano particles. The pre-service teachers were to develop their remote ‘real time’ experience into school classroom tasks, implement these tasks, and later report their findings to other pre-service teachers in the university activity system. As an extension to the project, the pre-service teachers were invited to co-author papers relating to the project. Data were collected from (a) reflective journals; (b) participant field notes – a pre-service teacher initiative; (c) surveys – a pre-service teacher initiative; (d) lesson reflections and digital recordings – a pre-service teacher initiative; and (e) interviews with participants. The findings are reported in terms of the major themes: boundary crossing, the philosophy of teaching, and professional relationships The findings have implications for teacher education. The researchers feel that deliberate planning for networking between activity systems may well be a solution to the apparent theory/practice gap. Proximity of activity systems need not be a hindering issue.
Resumo:
There is a growing interest in and support for education for sustainability in Australian schools. Australian Government schemes such as the Australian Sustainable Schools Initiative (AuSSI), along with strategies such as Educating for a Sustainable Future: A National Environmental Education Statement for Australian Schools(NEES(Australian Government and Curriculum Corporation (2005) and Living Sustainably: The Australian Government’s National Action Plan for Education for Sustainability (Australian Government 2009), recognise the need and offer support for education for sustainability in Australian schools. The number of schools that have engaged with AuSSI indicates that this interest also exists within Australian schools. Despite this, recent research indicates that pre-service teacher education institutions and programs are not doing all they can to prepare teachers for teaching education for sustainability or for working within sustainable schools. The education of school teachers plays a vital role in achieving changes in teaching and learning in schools. Indeed, the professional development of teachers in education for sustainability has been identified as ‘the priority of priorities’. Much has been written about the need to ‘reorient teacher education towards sustainability’. Teacher education is seen as a key strategy that is yet to be effectively utilised to embed education for sustainability in schools. Mainstreaming sustainability in Australian schools will not be achieved without the preparation of teachers for this task. The Mainstreaming Sustainability model piloted in this study seeks to engage a range of stakeholder organisations and key agents of change within a system to all work simultaneously to bring about a change, such as the mainstreaming of sustainability. The model is premised on the understanding that sustainability will be mainstreamed within teacher education if there is engagement with key agents of change across the wider teacher education system and if the key agents of change are ‘deeply’ involved in making the change. The model thus seeks to marry broad engagement across a system with the active participation of stakeholders within that system. Such a systemic approach is a way of bringing together diverse viewpoints to make sense of an issue and harness that shared interpretation to define boundaries, roles and relationships leading to a better defined problem that can be acted upon more effectively. Like action research, the systemic approach is also concerned with modelling change and seeking plausible solutions through collaboration between stakeholders. This is important in ensuring that outcomes are useful to the researchers/stakeholders and the system being researched as it creates partnerships and commitments to the outcomes by stakeholder participants. The study reported on here examines whether the ‘Mainstreaming Sustainability’ model might be effective as a means to mainstream sustainability in pre-service teacher education. This model, developed in an earlier study, was piloted in the Queensland teacher education system in order to examine its effectiveness in creating organisational and systemic change. The pilot project in Queensland achieved a number of outcomes. The project: • provided useful insights into the effectiveness of the Mainstreaming Sustainability model in bringing about change while also building research capacity within the system • developed capacities within the teacher education community: o developing competencies in education for sustainability o establishing more effective interactions between decision-makers and other stakeholders o establishing a community of inquiry • changed teaching and learning approaches used in participating teacher education institutions through: o curriculum and resource development o the adoption of education for sustainability teaching and learning processes o the development of institutional policies • improved networks within the teacher education system through: o identifying key agents of change within the system o developing new, and building on existing, partnerships between schools, teacher education institutions and government agencies • engaged relevant stakeholders such as government agencies and non-government organisations to understand and support the change Our findings indicate that the Mainstreaming Sustainability model is able to facilitate organisational and systemic change – over time – if: • the individuals involved have the conceptual and personal capacities needed to facilitate change, that is, to be a key agent of change • stakeholders are engaged as participants in the process of change, not simply as ‘interested parties’ • there is a good understanding of systemic change and the opportunities for leveraging change within systems. In particular, in seeking to mainstream sustainability in pre-service teacher education in Queensland it has become clear that one needs to build capacity for change within participants such as knowledge of education for sustainability, conceptual skills in systemic thinking, action research and organisational change, and leadership skills. It is also of vital importance that key agents of change – those individuals who are ‘hubs’ within a system and can leverage for change across a wide range of the system – are identified and engaged with as early as possible. Key agents of change can only be correctly identified, however, if the project leaders and known participants have clearly identified the boundary to their system as this enables the system, sub-system and environment of the system to be understood. Through mapping the system a range of key organisations and stakeholders will be identified, including government and nongovernment organisations, teacher education students, teacher education academics, and so on. On this basis, key agents of change within the system and sub-system can be identified and invited to assist in working for change. A final insight is that it is important to have time – and if necessary the funding to ‘buy time’ – in seeking to bring about system-wide change. Seeking to bring about system-wide change is an ambitious project, one that requires a great deal of effort and time. These insights provide some considerations for those seeking to utilise the Mainstreaming Sustainability model to bring about change within and across a pre-service teacher education system.
Resumo:
Action research proved a useful strategy for monitoring the evolution of microteaching task as an authentic assessment for post-graduate pre-service teachers. Through four iterations of continually reflecting on the structure, purpose and outcomes of utilising microteaching as assessment, unit coordinators implemented an authentic assessment task that simulated real world experience.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
A significant issue in primary teacher education is developing a knowledge base which prepares teachers to teach in a range of subject areas. In Australia, the problem in primary social science education is compounded by the integrated nature of the key learning area of Studies of Society and Environment (SOSE). Recent debates on teaching integrated social sciences omit discussions on the knowledge base for teaching. In this paper, a case study approach is used to investigate primary pre-service teachers’ approaches to developing a knowledge base in designing a SOSE curriculum unit. Data from five teacher-educators who taught primary SOSE curriculum indicates that novice teachers’ subject content knowledge, as revealed through their curriculum planning, lacked a disciplinary basis. However, understanding of inquiry learning, which is fundamental to social science education, was much stronger. This paper identifies a gap in the scholarship on teaching integrated social science and illustrates the need to support and develop primary teachers’ disciplinary knowledge in teacher education.
Resumo:
Denaturation of extracellular matrix proteins exposes cryptic binding sites. It is hypothesized that binding of cell adhesion receptors to these cryptic binding sites regulates cellular behaviour during tissue repair and regeneration. To test this hypothesis, we quantify the adhesion of pre-osteoblastic cells to native (Col) and partially-denatured (pdCol) collagen I using single-cell force spectroscopy. During early stages of cell attachment (≤180 s) pre-osteoblasts (MC3T3-E1) adhered significantly stronger to pdCol compared to Col. RGD (Arg-Gly-Asp)-containing peptides suppressed this elevated cell adhesion. We show that the RGD-binding α5β1- and αv-integrins mediated pre-osteoblast adhesion to pdCol, but not to Col. On pdCol pre-osteoblasts had a higher focal adhesion kinase tyrosine-phosphorylation level that correlated with enhanced spreading and motility. Moreover, pre-osteoblasts cultured on pdCol showed a pronounced matrix mineralization activity. Our data suggest that partially-denatured collagen exposes RGD-motifs that trigger binding of α5β1- and αv-integrins. These integrins initiate cellular processes that stimulate osteoblast adhesion, spreading, motility and differentiation. Taken together, these quantitative insights reveal an approach for the development of alternative collagen I- based surfaces for tissue engineering applications.
Resumo:
This paper reports on a qualitative interview study with eleven pre-service primary teachers in Queensland about their career plans exploring whether and how a global imagination motivates this next generation of teachers. The study is framed within sociological theory of globalisation, with regard to the growing possibilities for international mobility for work purposes, and the new life circumstances which make this imaginable. Teaching as a profession has changed and teachers are no longer as entangled with specific systems or geographical locations anymore. International recruitment campaigns are shown to pursue these pre-service teachers during their university preparation. The analysis of the interview data reveals the kind of impact these possibilities make on how pre-service teachers imagine their career, and what other considerations enhance or limit their global imagination. The findings are used to reflect on the highly localised governance of pre-service teacher preparation and the limited state-bound imaginaries to which these pre-service teachers are unnecessarily confined in their preparation.
Resumo:
The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
This paper reports on the opportunities for transformational learning experienced by a group of pre-service teachers who were engaged in service-learning as a pedagogical process with a focus on reflection. Critical social theory informed the design of the reflection process as it enabled a move away from knowledge transmission toward knowledge transformation. The structured reflection log was designed to illustrate the critical social theory expectations of quality learning that teach students to think critically: ideology critique and utopian critique. Butin's lenses and a reflection framework informed by the work of Bain, Ballantyne, Mills and Lester were used in the design of the service-learning reflection log. Reported data provide evidence of transformational learning and highlight how the students critique their world and imagine how they could contribute to a better world in their work as a beginning teacher.
Resumo:
The structure of the 1:1 proton-transfer compound from the reaction of L-tartaric acid with the azo-dye precursor aniline yellow [4-(phenylazo)aniline], 4-(phenyldiazenyl)anilinium hydrogen 2R,3R-tartrate C12H12N3+ . C4H6O6- has been determined at 200 K. The asymmetric unit of the compound contains two independent phenylazoanilinium cations and two hydrogen L-tartrate anions. The structure is unusual in that all four phenyl rings of both cations have identical 50% rotational disorder. The two hydrogen L-tartrate anions form independent but similar chains through head-to-tail carboxylic O--H...O~carboxyl~ hydrogen bonds [graph set C7] which are then extended into a two-dimensional hydrogen-bonded sheet structure through hydroxyl O--H...O hydrogen-bonding links. The anilinium groups of the phenyldiazenyl cations are incorporated into the sheets and also provide internal hydrogen-bonding extensions while their aromatic tails layer in the structure without significant interaction except for weak \p--\p interactions [minimum ring centroid separation, 3.844(3) \%A]. The hydrogen L-tartrate residues of both anions have the common short intramolecular hydroxyl O--H...O~carboxyl~ hydogen bonds. This work has provided a solution to the unusual disorder problem inherent in the structure of this salt as well as giving another example of the utility of the hydrogen tartrate in the generation of sheet substructures in molecular assembly processes.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.