849 resultados para Peat structure and properties
Resumo:
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.
Resumo:
Using a Langevin molecular dynamics simulation, we show that the magnetic properties of a mono- and bi-dispersed ferrofluid system depend on the volume fraction and the dipolar coupling parameter. For the bi-dispersed system, most of the chains are formed by the large particles, but the aggregation behavior of the large particles is hindered by the presence of the small particles, which are predominantly attached to the end of the particle chain. To further elucidate the microscopic fluid structure, anisotropic structure factors are calculated.
Resumo:
We study by Langevin molecular dynamics simulations systematically the influence of polydispersity in the particle size, and subsequently in the dipole moment, on the physical properties of ferrofluids. The polydispersity is in a first approximation modeled by a bidisperse system that consists of small and large particles at different ratios of their volume fractions. In the first part of our investigations the total volume fraction of the system is fixed, and the volume fraction phi(L) of the large particles is varied. The initial susceptibility chi and magnetization curve of the systems show a strong dependence on the value of phi(L). With the increase of phi(L), the magnetization M of the system has a much faster increment at weak fields, and thus leads to a larger chi. We performed a cluster analysis that indicates that this is due to the aggregation of the large particles in the systems. The average size of these clusters increases with increasing phi(L). In the second part of our investigations, we fixed the volume fraction of the large particles, and increased the volume fraction phi(S) of the small particles in order to study their influence on the chain formation of the large ones. We found that the average aggregate size formed by large particles decreases when phi(S) is increased, demonstrating a significant effect of the small particles on the structural properties of the system. A topological analysis of the structure reveals that the majority of the small particles remain nonaggregated. Only a small number of them are attracted to the ends of the chains formed by large particles.
Resumo:
High-resolution powder neutron diffraction data collected for the skutterudites MGe1.5S1.5 (M=Co, Rh, Ir) reveal that these materials adopt an ordered skutterudite structure (space group R3¯), in which the anions are ordered in layers perpendicular to the [111] direction. In this ordered structure, the anions form two-crystallographically distinct four-membered rings, with stoichiometry Ge2S2, in which the Ge and S atoms are trans to each other. The transport properties of these materials, which are p-type semiconductors, are discussed in the light of the structural results. The effect of iron substitution in CoGe1.5S1.5 has been investigated. While doping of CoGe1.5S1.5 has a marked effect on both the electrical resistivity and the Seebeck coefficient, these ternary skutterudites exhibit significantly higher electrical resistivities than their binary counterparts.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: alpha-helix (20%), beta-sheet (33%), turned (19%) and unordered (28%). RMSD 1%. CpOsm was stable at up to 75 degrees C, and thermal denaturation (T(m)) was calculated to be 77.8 degrees C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Structural and conformational properties of 1H-Isoindole-1,3(2H)-dione, 2-[(methoxycarbonyl)thio] (S-phthalimido O-methyl thiocarbonate) are analyzed using a combined approach including X-ray diffraction, vibrational spectra and theoretical calculation methods. The vibrational properties have been studied by infrared and Raman spectroscopies along with quantum chemical calculations (B3LYP and B3PW91 functional in connection with the 6-311++G** and aug-cc-pVDZ basis sets). The crystal structure was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic P2(1)/c space group with a = 6.795(1), b = 5.109(1), c = 30.011(3) angstrom, beta = 90.310(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the N-S-C=O group is syn (C=O double bond in synperiplanar orientation with respect to the N-S single bond). The experimental molecular structure is well reproduced by the MP2/aug-cc-pVDZ method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
3`-Azido-3`-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis. X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O)(2)C=O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C(21)H(24)N(10)O(9), crystallizes in the tetragonal space group P4(1)2(1)2 with a = b = 15.284(1), c = 21.695(1) angstrom, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Mg-Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel-metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg-50 at.% Ni alloy with Ni and Ni-5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg-Ni alloy and resulting nanocomposites (i.e., Mg-Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg-Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni-5% Al increased the maximum discharge capacity of the Mg-Ni alloy from of 221 to 257 and 273 mA h g(-1), respectively. Improvement on the cycle life performance was also achieved by mechanical coating.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)