926 resultados para Pareto-optimal solutions
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.
Resumo:
In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.
Resumo:
In this paper, we determine packet scheduling policies for efficient power management in Energy Harvesting Sensors (EHS) which have to transmit packets of high and low priorities over a fading channel. We assume that incoming packets are stored in a buffer and the quality of service for a particular type of message is determined by the expected waiting time of packets of that type of message. The sensors are constrained to work with the energy that they garner from the environment. We derive transmit policies which minimize the sum of expected waiting times of the two types of messages, weighted by penalties. First, we show that for schemes with a constant rate of transmission, under a decoupling approximation, a form of truncated channel inversion is optimal. Using this result, we derive optimal solutions that minimize the weighted sum of the waiting times in the different queues.
Resumo:
Femtocells are a new concept which improves the coverage and capacity of a cellular system. We consider the problem of channel allocation and power control to different users within a Femtocell. Knowing the channels available, the channel states and the rate requirements of different users the Femtocell base station (FBS), allocates the channels to different users to satisfy their requirements. Also, the Femtocell should use minimal power so as to cause least interference to its neighboring Femtocells and outside users. We develop efficient, low complexity algorithms which can be used online by the Femtocell. The users may want to transmit data or voice. We compare our algorithms with the optimal solutions.
Resumo:
The sparse estimation methods that utilize the l(p)-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These l(p)-norm-based regularizations make the optimization function nonconvex, and algorithms that implement l(p)-norm minimization utilize approximations to the original l(p)-norm function. In this work, three such typical methods for implementing the l(p)-norm were considered, namely, iteratively reweighted l(1)-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of l(p)-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. (C) 2014 Optical Society of America
Resumo:
Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.
Resumo:
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Resumo:
A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.
Resumo:
The Linear Ordering Problem is a popular combinatorial optimisation problem which has been extensively addressed in the literature. However, in spite of its popularity, little is known about the characteristics of this problem. This paper studies a procedure to extract static information from an instance of the problem, and proposes a method to incorporate the obtained knowledge in order to improve the performance of local search-based algorithms. The procedure introduced identifies the positions where the indexes cannot generate local optima for the insert neighbourhood, and thus global optima solutions. This information is then used to propose a restricted insert neighbourhood that discards the insert operations which move indexes to positions where optimal solutions are not generated. In order to measure the efficiency of the proposed restricted insert neighbourhood system, two state-of-the-art algorithms for the LOP that include local search procedures have been modified. Conducted experiments confirm that the restricted versions of the algorithms outperform the classical designs systematically. The statistical test included in the experimentation reports significant differences in all the cases, which validates the efficiency of our proposal.
Resumo:
33 p.
Resumo:
Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.
Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.
The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.
Resumo:
Nas últimas décadas, o problema de escalonamento da produção em oficina de máquinas, na literatura referido como JSSP (do inglês Job Shop Scheduling Problem), tem recebido grande destaque por parte de pesquisadores do mundo inteiro. Uma das razões que justificam tamanho interesse está em sua alta complexidade. O JSSP é um problema de análise combinatória classificado como NP-Difícil e, apesar de existir uma grande variedade de métodos e heurísticas que são capazes de resolvê-lo, ainda não existe hoje nenhum método ou heurística capaz de encontrar soluções ótimas para todos os problemas testes apresentados na literatura. A outra razão basea-se no fato de que esse problema encontra-se presente no diaa- dia das indústrias de transformação de vários segmento e, uma vez que a otimização do escalonamento pode gerar uma redução significativa no tempo de produção e, consequentemente, um melhor aproveitamento dos recursos de produção, ele pode gerar um forte impacto no lucro dessas indústrias, principalmente nos casos em que o setor de produção é responsável por grande parte dos seus custos totais. Entre as heurísticas que podem ser aplicadas à solução deste problema, o Busca Tabu e o Multidão de Partículas apresentam uma boa performance para a maioria dos problemas testes encontrados na literatura. Geralmente, a heurística Busca Tabu apresenta uma boa e rápida convergência para pontos ótimos ou subótimos, contudo esta convergência é frequentemente interrompida por processos cíclicos e a performance do método depende fortemente da solução inicial e do ajuste de seus parâmetros. A heurística Multidão de Partículas tende a convergir para pontos ótimos, ao custo de um grande esforço computacional, sendo que sua performance também apresenta uma grande sensibilidade ao ajuste de seus parâmetros. Como as diferentes heurísticas aplicadas ao problema apresentam pontos positivos e negativos, atualmente alguns pesquisadores começam a concentrar seus esforços na hibridização das heurísticas existentes no intuito de gerar novas heurísticas híbridas que reúnam as qualidades de suas heurísticas de base, buscando desta forma diminuir ou mesmo eliminar seus aspectos negativos. Neste trabalho, em um primeiro momento, são apresentados três modelos de hibridização baseados no esquema geral das Heurísticas de Busca Local, os quais são testados com as heurísticas Busca Tabu e Multidão de Partículas. Posteriormente é apresentada uma adaptação do método Colisão de Partículas, originalmente desenvolvido para problemas contínuos, onde o método Busca Tabu é utilizado como operador de exploração local e operadores de mutação são utilizados para perturbação da solução. Como resultado, este trabalho mostra que, no caso dos modelos híbridos, a natureza complementar e diferente dos métodos Busca Tabu e Multidão de Partículas, na forma como são aqui apresentados, da origem à algoritmos robustos capazes de gerar solução ótimas ou muito boas e muito menos sensíveis ao ajuste dos parâmetros de cada um dos métodos de origem. No caso do método Colisão de Partículas, o novo algorítimo é capaz de atenuar a sensibilidade ao ajuste dos parâmetros e de evitar os processos cíclicos do método Busca Tabu, produzindo assim melhores resultados.
Resumo:
Almost all material selection problems require that a compromise be sought between some metric of performance and cost. Trade-off methods using utility functions allow optimal solutions to be found for two objective, but for three it is harder. This paper develops and demonstrates a method for dealing with three objectives.