891 resultados para PRIMARY-SECONDARY HYBRID BATTERIES
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.
Resumo:
International audience
Resumo:
Anuran species diversity and abundance were evaluated in different farming status of cocoa plantation in Ore, Ondo State, Nigeria. Applying the combination of visual encounter survey (VES) and acoustical survey (AES), the different farms surveyed were categorized as; 1) pure cocoa farms with pesticides applied (PCWP); 2) pure cocoa farms without pesticides application; 3) intercropped cocoa farms with pesticides applied (ICWP); and 4) intercropped cocoa farms without pesticides application (ICNP). The surrounding primary/secondary forest (PSFV) was sampled applying the transect method. A mean total of 690±2.6 anurans belonging to 28 species, 14 genera and 9 families were recorded during the study. Out of these, 10, 19, 17, 22 and 26 species were recorded respectively from PCWP, PCNP, ICWP, ICNP and PSFV. The anuran species richness was significantly different between the different cocoa plantation status and the forest sites (F4, 10 = 20.55, P< 0.01). The highest mean number of individuals (190±9.5) was observed at ICNP followed by PSFV (183±5.7), while the least was at PCWP (77±8.0). There was also significant difference (F4, 10 = 150.48, P< 0.01) between the abundance of anuran species at the various sites. Diversity indices (Shannon and Margalef) showed that the forest sites had the greatest (3.204 and 4.799) respectively while the pesticide using pure cocoa farms had the least (1.853 and 2.072). Generally, the result of the study clearly indicated that pesticide use cocoa farms were significantly lower compared to other sites. Farmers are encouraged to engage in intercropping (polyculture) especially with food and economic crops in a biodiversity friendly manner which could have similar characteristics of a natural ecosystem, thereby enhancing the biological diversity of agro-ecosystems.
Resumo:
Expedient synthetic approaches to the highly functionalized polycyclic alkaloids communesin F and perophoramidine are described using a unified approach featuring a key decarboxylative allylic alkylation to access a crucial and highly congested 3,3-disubstituted oxindole. Described are two distinct, stereoselective alkylations that produce structures in divergent diastereomeric series possessing the critical vicinal all-carbon quaternary centers needed for each synthesis. Synthetic studies toward these challenging core structures have revealed a number of unanticipated modes of reactivity inherent to these complex alkaloid scaffolds. Finally, a previously unknown mild and efficient deprotection protocol for the o-nitrobenzyl group is disclosed – this serendipitous discovery permitted a concise endgame for the formal syntheses of both communesin F and perophoramidine.
In addition, the atroposelective synthesis of PINAP ligands has been accomplished via a palladium-catalyzed C–P coupling process through dynamic kinetic resolution. These catalytic conditions allow access to a wide variety of alkoxy- and benzyloxy-substituted PINAP ligands in high enantiomeric excess.
An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step.
Finally, synthetic studies toward polycyclic ineleganolide are described. The entire fragmented carbon framework has been constructed from this work. Highly (Z)-selective olefination was achieved by the method by the Ando group.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
Metastasizing pleomorphic adenoma (MPA) is a rare tumour, and its mechanism of metastasis still is unknown. To date, there has been no study on MPA genomics. We analysed primary and secondary MPAs with array comparative genomic hybridization to identify somatic copy number alterations and affected genes. Tumour DNA samples from primary (parotid salivary gland) and secondary (scalp skin) MPAs were subjected to array comparative genomic hybridization investigation, and the data were analysed with NEXUS COPY NUMBER DISCOVERY. The primary MPA showed copy number losses affecting 3p22.2p14.3 and 19p13.3p123, and a complex pattern of four different deletions at chromosome 6. The 3p deletion encompassed several genes: CTNNB1, SETD2, BAP1, and PBRM1, among others. The secondary MPA showed a genomic profile similar to that of the primary MPA, with acquisition of additional copy number changes affecting 9p24.3p13.1 (loss), 19q11q13.43 (gain), and 22q11.1q13.33 (gain). Our findings indicated a clonal origin of the secondary MPA, as both tumours shared a common profile of genomic copy number alterations. Furthermore, we were able to detect in the primary tumour a specific pattern of copy number alterations that could explain the metastasizing characteristic, whereas the secondary MPA showed a more unbalanced genome.
Resumo:
Secondary caries has been reported as the main reason for restoration replacement. The aim of this in vitro study was to evaluate the performance of different methods - visual inspection, laser fluorescence (DIAGNOdent), radiography and tactile examination - for secondary caries detection in primary molars restored with amalgam. Fifty-four primary molars were photographed and 73 suspect sites adjacent to amalgam restorations were selected. Two examiners evaluated independently these sites using all methods. Agreement between examiners was assessed by the Kappa test. To validate the methods, a caries-detector dye was used after restoration removal. The best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve (Az), and the sensitivity, specificity and accuracy of the methods were calculated for enamel (D2) and dentine (D3) thresholds. These parameters were found for each method and then compared by the McNemar test. The tactile examination and visual inspection presented the highest inter-examiner agreement for the D2 and D3 thresholds, respectively. The visual inspection also showed better performance than the other methods for both thresholds (Az = 0.861 and Az = 0.841, respectively). In conclusion, the visual inspection presented the best performance for detecting enamel and dentin secondary caries in primary teeth restored with amalgam.
Resumo:
The growth in thickness of monocotyledon stems can be either primary, or primary and secondary. Most of the authors consider this thickening as a result of the PTM (Primary Thickening Meristem) and the STM (Secondary Thickening Meristem) activity. There are differences in the interpretation of which meristem would be responsible for primary thickening. In Cordyline fruticosa the procambium forms two types of vascular bundles: collateral leaf traces (with proto and metaxylem and proto and metaphloem), and concentric cauline bundles (with metaxylem and metaphloem). The procambium also forms the pericycle, the outermost layer of the vascular cylinder consisting of smaller and less intensely colored cells that are divided irregularly to form new vascular bundles. The pericycle continues the procambial activity, but only produces concentric cauline bundles. It was possible to conclude that the pericycle is responsible for the primary thickening of this species. Further away from the apex, the pericyclic cells undergo periclinal divisions and produce a meristematic layer: the secondary thickening meristem. The analysis of serial sections shows that the pericycle and STM are continuous in this species, and it is clear that the STM originates in the pericycle.The endodermis is acknowledged only as the innermost layer of the cortex.
Resumo:
Because CD4(+) T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4(+) T cells could enhance an antitumor response mediated by similarly gene-engineered CD8(+) T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4(+) and CD8(+) cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4(+) and CD8(+) T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2(+) tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8(+) and CD4(+) T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8(+)) engineered T cells. Transferred CD4(+) T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent re-challenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8(+) and CD4(+) T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.
Resumo:
Federico Foundation
Resumo:
Objective: To evaluate the prevalence of traditional risk factors in patients with primary antiphospholipid syndrome (APS) in comparison to those with systemic lupus erythematosus-secondary APS. Methods: Transversal study of 96 APS patients (Sapporo`s criteria). Demographic and clinical data, cardiovascular risk factors and drug use were investigated. Results: Thirty-nine Primary APS and 57 secondary APS were included. The groups did not differ regarding age (38.5 +/- 9.9 vs. 39.4 +/- 10.5 years, p=0.84) and female gender (84.6 vs. 96.5%, p=0.06), respectively. Arterial events were more observed in primary than secondary APS (59 vs. 36.8%, p=0.04) patients. No difference was seen concerning venous and obstetric events. In regard to traditional risk factors for cardiovascular disease, both groups were comparable related to current or previous smoking, sedentarism, family history for coronary disease, systemic hypertension, diabetes mellitus, overweight and obesity. The frequencies of altered lipid profiles were alike in the two groups, except for a higher prevalence of low HDL-c levels in primary APS group (84.6 vs. 45.5%, p=0.0001). Concerning drug use, no significant differences were observed related to chloroquine and statin use, however the secondary APS patients had a higher rate of prednisone use (10.2 vs. 57.9%, p<0.001) as well as mean dose of corticosteroid (1.5 +/- 5.7 vs. 9.2 +/- 12.5mg/ /day, p=0.0001). Conclusion: Traditional risk factors for cardiovascular disease are present and comparable between patients with primary and secondary APS, except for a high frequency of low HDL-c in primary APS patients.