993 resultados para PHOTOLUMINESCENCE SPECTRA
Resumo:
We verify that the magnetic suppression of intersubband LO or LA phonon scattering can give rise to a noticeable nonthermal occupation in higher-lying subbands. This is clearly determined by the relative intensity ratio of the interband photoluminescence spectra for the E-2 - HH1 and E-1 - HH1 transitions. The observed phenomenon may provide an effective method to control the intersubband scattering rate, which is a key factor of the so-called quantum cascade lasers. This is helpful for the population inversion between both the subbands in quantum wells.
Resumo:
A detailed study of the characteristics of undoped GaN films, grown on either vicinal or nominal flat SiC (0001) substrates by molecular beam epitaxy, has been carried out using photoluminescence and Raman scattering techniques. The I I K photoluminescence spectra of the GaN film grown on the vicinal SiC (0001) substrate show a strong and sharp near-bandgap peak (full width at half maximum (FWHM) similar to 16 meV). This feature contrasts with that of the GaN film grown on the nominal flat SiC (0001) substrate where the I I K photoluminescence spectra exhibit the near-bandgap peak (FWHM similar to 25 meV) and the intensity is approximately seven times weaker than that of the vicinal film sample. The redshift of the near-bandgap peak associated with excitons bound to shallow donors is related to the stress caused by both the lattice mismatch and the thermal expansion coefficient difference between GaN and SiC substrates. The measured thermal activation energy of the shallow donor of 33.4 meV is determined by using an Arrhenius plot of the near-bandgap luminescence versus I IT from the slope of the graph at high temperature. The temperature dependence of the FWHM of the near-bandgap luminescence has also been studied. The Raman scattering measurements from the vicinal film reveal that the E-2 phonon peak is strengthened and the A(1)(LO) phonon peak is shifted towards the low-frequency side with enhanced intensity, in comparison to that from the nominal flat film, suggesting a reduction in the density of defects and a lower free carrier concentration in the vicinal GaN film.
Resumo:
The reflectivity spectra at different incident angles of semiconductor microcavity having heavy-hole exciton and light-hole exciton are calculated ly transfer matrix method using the linear dispersion model. Meanwhile we calculate the energy of three cavity polaritons at different incident angles formed by the coupling between cavity mode and the two exciton modes using the three harmonic oscillators coupling model, and the weights of cavity mode and the two exciton modes in the three cavity polaritons. The results indicate that there is obvious anticross between the high energy cavity polariton and the two low energy cavity polaritons with increasing incident angles, and the weights of three modes(cavity mode, heavy-hole exciton mode and light-hole exciton mode) in the three cavity polaritons increase or decrease.
Resumo:
A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.
Resumo:
We have investigated the photo-excited capacitance-voltage (C-V) characteristics as well as the photoluminescence spectra under different biases of a wide quantum well (QW) embedded in an n(+)-i-n(+) double-barrier structure. The pronounced peak feature at zero bias in the C-V spectrum observed upon illumination is regarded as a kind of quantum capacitance related to the quantum confined Stark effect, originating from the spatial separation of the photo-generated electron and hole gas in the QW. This fact is further demonstrated through the comparison between the C-V curve with the PL intensity versus applied voltage relationship under the same excitation. The results may provide us with a more direct and sensitive means in the detection of the separation and accumulation of both types of free carriers-electrons and holes-in low-dimensional semiconductor structures, especially in a new type of optical memory cell.
Resumo:
Thermal-induced interdiffusion in InAs/GaAs quantum dot superlattices is studied by high-resolution x-ray diffraction rocking curve and photoluminescence techniques. With increasing annealing temperatures, up to 300 meV a blueshift of the emission peak position and down to 16.6 meV a narrowing of the line width are found in the photoluminescence spectra, and respective intensity of the higher-order satellite peaks to lower-order ones in the x-ray rocking curves decreases. Dynamical theory is employed to simulate the measured x-ray diffraction data. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness and stress variations caused by interdiffusion are taken into account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The estimated diffusion coefficient is 1.8 x 10(-17) cm(2) (.) s(-1) at 650 degreesC, 3.2 x 10(-17) cm(2 .) s(-1) at 750 degreesC, and 1.2 x 10(-14) cm(2 .) s(-1) at 850 degreesC.
Resumo:
Glass spherical microcavities containing CdSexS1-x semiconductor quantum dots (QDs) are fabricated. The coupling between the optical emission of embedded CdSexS1-x QDs and spherical cavity modes is realized. When the luminescence of QDs is excited by a laser beam, the strong whispering gallery mode resonance with high Q factors is achieved in the photoluminescence spectra. (C) 2001 American Institute of Physics.
Resumo:
Homoepitaxial growth of SiC on a Si-face (0 0 0 1) GH-SIC substrate has been performed in a modified gas-source molecular beam epitaxy system with Si2H6 and C2H4 at temperatures ranging 1000 1450 degreesC while keeping a constant SiC ratio (0.7) in the gas phase. X-ray diffraction patterns, Raman scattering measurements. and low-temperature photoluminescence spectra showed single-crystalline SiC. Mesa-type SiC p-n junctions were obtained on these epitaxial layers, and their I-V characteristics are presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
Influence of substrate orientation on In0.5Ga0.5As/GaAs quantum dots grown by molecular beam epitaxy
Resumo:
In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized In0.55Al0.45As/Al0.50Ga0.50As quantum dots are grown by the Stranski-Krastanow growth mode using molecular beam epitaxy on the GaAs(311)A substrate. The optical properties of type-II InAlAs/AlGaAs quantum dots have been demonstrated by the excitation power and temperature dependence of photoluminescence spectra. A simple model accounting for the size-dependent band gap of quantum dots is given to qualitatively understand the formation of type-II In0.55Al0.45As/Al0.50Ga0.50As quantum dots driven by the quantum-confinement-induced Gamma --> X transition. The results provide new insights into the band structure of InAlAs/AlGaAs quantum dots. (C) 2000 American Institute of Physics. [S0003-6951(00)00725-7].
Resumo:
The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.
Resumo:
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The samples of silicon nanocrystals (nc-Si) were prepared by Si ion implanted into SiO2 layers. Photoluminescence spectra were measured at room temperature and their dependence on thermal annealing was investigated. The experimental results show that PL peaks originate from the defects in SiO2 layers caused by ion implantation when the thermal annealing temperature is lower than 800 C. The PL peak from nc-Si was observed when the thermal annealing temperature was higher than 900 C, and PL intensity reached its maximum at the thermal annealing temperature of 1100 C. As the annealing temperature increases the red shift of PL peak from nc-Si shows the quantum size effect. The characterized Raman scattering peak of nc-Si was observed at the right angle scattering configuration for the first time. It provides further support for the PL measurements.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix has been formed by annealing the a-SiOx films fabricated by plasma enhanced chemical vapor deposition technique. Absorption and photoluminescence spectra of, the films have been studied in conjunction with micro-Raman scattering spectra. It is found that absorption presents an exponential dependence of absorption coefficient to photon energy in the range of 1.5-3.0 eV, and a sub-band appears in the range of 1.0-1.5 eV. The exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the sub-band absorption is ascribed to transitions between surfaces and/or defect states of the silicon nanocrystallites. The existence of Stokes shift between absorption and photoluminescence suggests that the phonon-assisted luminescence would he enhanced due to the quantum confinement effects.