979 resultados para PARASITE DEVELOPMENT
Resumo:
Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some molecules unique to schistosomes and platyhelminths. The biology of some components, particular those contributing to host-parasite interactions as well as chemotherapy and immunotherapy are discussed. Unresolved questions in relation to the structure and function of the tegument relate to dynamic organization of the syncytial layer. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Individuals living in regions where malaria is endemic develop an acquired immunity to malaria which enables them to remain asymptomatic while still carrying parasites. Field studies indicate that cumulative exposure to a variety of diverse Plasmodium parasites is required for the transition from symptomatic to asymptomatic malaria. This study used a simulation model of the within-host dynamics of P. falciparum to investigate the development of acquired clinical immunity under different transmission conditions and levels of parasite diversity. Antibodies developed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), a clonally variant molecule, were assumed to be a key human immunological response to P. falciparum infection, along with responses to clonally conserved but polymorphic antigens. The time to the development of clinical immunity was found to be proportional to parasite diversity and inversely proportional to transmission intensity. The effect of early termination of symptomatic infections by chemotherapy was investigated and found not to inhibit the host's ability to develop acquired immunity. However, the time required to achieve this state was approximately double that compared to when no treatment was administered. This study demonstrates that an immune response primarily targeted against PfEMP1 has the ability to reduce clinical symptoms of infections irrespective of whether treatment is administered, supporting its role in the development of acquired clinical immunity. The results also illustrate a novel use for simulation models of P. falciparum infections, investigation of the influence of intervention strategies on the development of naturally acquired clinical immunity.
Resumo:
Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSPI,g-specific Abs but not A yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.
Venom proteins from polydnavirus-producing endoparasitoids: Their role in host-parasite interactions
Resumo:
Endoporasitoid wasps have evolved various mechanisms to ensure successful development of their progeny, including co-injection of a cocktail of maternal secretions into the host hemocoel, including venom, calyx fluid, and polydnoviruses. The components of each type of secretion may influence host physiology and development independently or in a synergistic fashion. For example, venom fluid consists of several peptides and proteins that promote expression of polydnavirus genes in addition to other activities, such as inhibition of prophenoloxidase activation, inhibition of hemocytes spreading and aggregation, and inhibition of development. This review provides a brief overview of advances and prospects in the study of venom proteins from polydnavirus-producing endoparositoid wasps with a special emphasis on the role of C. rubecula venom proteins in host-parositoid interactions.
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.