144 resultados para NLP
Resumo:
In the following paper a new class of executive information system is suggested. It is based on a selforganization in management and on a module modeling. The system is multifunctional and multidisciplinary. The structure elements of the system and the common features of the modules are discussed.
Resumo:
In the framework of 1D Nonlinear Shrödinger Equation (NSE) we demonstrate how one can control the refractive angle of a fundamental soliton beam passing through an optical lattice, by adjusting either the shape of an individual waveguide or the relative positions of waveguides. Even for a single scatterer its shape has a nontrivial effect on the refraction direction. In the case of shallow modulation we provide an analytical description based of the effect on the soliton perturbation theory. When one considers a lattice of scatterers, there emanates an additional form factor in the radiation density (RD) of emitted waves referring to the wave-soliton beating and interference inside the lattice. We concentrate on the results for two cases: periodic lattice and disordered lattice of scattering shapes. © 2011 IEEE.
Resumo:
One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.
Resumo:
The current study builds upon a previous study, which examined the degree to which the lexical properties of students’ essays could predict their vocabulary scores. We expand on this previous research by incorporating new natural language processing indices related to both the surface- and discourse-levels of students’ essays. Additionally, we investigate the degree to which these NLP indices can be used to account for variance in students’ reading comprehension skills. We calculated linguistic essay features using our framework, ReaderBench, which is an automated text analysis tools that calculates indices related to linguistic and rhetorical features of text. University students (n = 108) produced timed (25 minutes), argumentative essays, which were then analyzed by ReaderBench. Additionally, they completed the Gates-MacGinitie Vocabulary and Reading comprehension tests. The results of this study indicated that two indices were able to account for 32.4% of the variance in vocabulary scores and 31.6% of the variance in reading comprehension scores. Follow-up analyses revealed that these models further improved when only considering essays that contained multiple paragraph (R2 values = .61 and .49, respectively). Overall, the results of the current study suggest that natural language processing techniques can help to inform models of individual differences among student writers.
Resumo:
Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.
Resumo:
The Semantic Annotation component is a software application that provides support for automated text classification, a process grounded in a cohesion-centered representation of discourse that facilitates topic extraction. The component enables the semantic meta-annotation of text resources, including automated classification, thus facilitating information retrieval within the RAGE ecosystem. It is available in the ReaderBench framework (http://readerbench.com/) which integrates advanced Natural Language Processing (NLP) techniques. The component makes use of Cohesion Network Analysis (CNA) in order to ensure an in-depth representation of discourse, useful for mining keywords and performing automated text categorization. Our component automatically classifies documents into the categories provided by the ACM Computing Classification System (http://dl.acm.org/ccs_flat.cfm), but also into the categories from a high level serious games categorization provisionally developed by RAGE. English and French languages are already covered by the provided web service, whereas the entire framework can be extended in order to support additional languages.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The overwhelming amount and unprecedented speed of publication in the biomedical domain make it difficult for life science researchers to acquire and maintain a broad view of the field and gather all information that would be relevant for their research. As a response to this problem, the BioNLP (Biomedical Natural Language Processing) community of researches has emerged and strives to assist life science researchers by developing modern natural language processing (NLP), information extraction (IE) and information retrieval (IR) methods that can be applied at large-scale, to scan the whole publicly available biomedical literature and extract and aggregate the information found within, while automatically normalizing the variability of natural language statements. Among different tasks, biomedical event extraction has received much attention within BioNLP community recently. Biomedical event extraction constitutes the identification of biological processes and interactions described in biomedical literature, and their representation as a set of recursive event structures. The 2009–2013 series of BioNLP Shared Tasks on Event Extraction have given raise to a number of event extraction systems, several of which have been applied at a large scale (the full set of PubMed abstracts and PubMed Central Open Access full text articles), leading to creation of massive biomedical event databases, each of which containing millions of events. Sinece top-ranking event extraction systems are based on machine-learning approach and are trained on the narrow-domain, carefully selected Shared Task training data, their performance drops when being faced with the topically highly varied PubMed and PubMed Central documents. Specifically, false-positive predictions by these systems lead to generation of incorrect biomolecular events which are spotted by the end-users. This thesis proposes a novel post-processing approach, utilizing a combination of supervised and unsupervised learning techniques, that can automatically identify and filter out a considerable proportion of incorrect events from large-scale event databases, thus increasing the general credibility of those databases. The second part of this thesis is dedicated to a system we developed for hypothesis generation from large-scale event databases, which is able to discover novel biomolecular interactions among genes/gene-products. We cast the hypothesis generation problem as a supervised network topology prediction, i.e predicting new edges in the network, as well as types and directions for these edges, utilizing a set of features that can be extracted from large biomedical event networks. Routine machine learning evaluation results, as well as manual evaluation results suggest that the problem is indeed learnable. This work won the Best Paper Award in The 5th International Symposium on Languages in Biology and Medicine (LBM 2013).
Resumo:
Les travaux effectués au cours de ce mémoire ont permis de développer une alternative aux vaccins présentement utilisés contre le virus de l’influenza. Nous avons utilisé la nucléoprotéine (NP) de l’influenza comme base vaccinale puisque cette protéine est conservée chez les souches d’influenza A et qu’elle possède un potentiel de protection croisée. Nous avons montré que la multimérisation de la NP grâce à un gabarit d’ARN permet d’augmenter son immunogenicité. Cette multimérisation en pseudo-nucléoparticule virale (NLP) a augmenté la réponse humorale et cellulaire spécifique à NP et l’ajout d’un adjuvant (PAL) a permis d’amplifier davantage la réponse humorale contre NP. Une dose du vaccin candidat NLP-PAL n’a pas réussi à protéger des souris contre une infection létale avec une souche homotypique d’influenza. Cependant, des résultats avec un régime de deux immunisations montrent des résultats encourageants qui permettent d’espérer une protection envers une infection virale.
Resumo:
Depuis le milieu des années 2000, une nouvelle approche en apprentissage automatique, l'apprentissage de réseaux profonds (deep learning), gagne en popularité. En effet, cette approche a démontré son efficacité pour résoudre divers problèmes en améliorant les résultats obtenus par d'autres techniques qui étaient considérées alors comme étant l'état de l'art. C'est le cas pour le domaine de la reconnaissance d'objets ainsi que pour la reconnaissance de la parole. Sachant cela, l’utilisation des réseaux profonds dans le domaine du Traitement Automatique du Langage Naturel (TALN, Natural Language Processing) est donc une étape logique à suivre. Cette thèse explore différentes structures de réseaux de neurones dans le but de modéliser le texte écrit, se concentrant sur des modèles simples, puissants et rapides à entraîner.
Resumo:
International audience
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010
Resumo:
Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.
Resumo:
Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.