829 resultados para NICKEL-TITANIUM INSTRUMENTS
Resumo:
Objective: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. Methods: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). Results: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. Conclusion: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion.
Resumo:
Dental implant materials are required to enable good apposition of bone and soft tissues. They must show sufficient resistance to chemical, physical and biological stress in the oral cavity to achieve good long-term outcomes. A critical issue is the apposition of the soft tissues, as they have provided a quasi-physiological closure of oral cavity. The present experiment was performed to study the peri-implant tissue response to non-submerged (1-stage) implant installation procedures. Two different implants types (NobelBiocare, NobelReplace (R) Tapered Groovy 4.3 x 10 mm and Replace (R) Select Tapered TiU RP 4.3 x 10 mm) were inserted into the right and left sides of 8 domestic pigs (Sus scrofa domestica) mandibles, between canines and premolars and immediately provided with a ceramic crown. Primary implant stability was determined using ressonance frequency analysis. Soft tissue parameters were assessed: sulcus depth (SDI) and junctional epithelium (JE). Following 70 days of healing, jaw sections were processed for histology and histomorphometric examination. Undecalcified histological sections demonstrated osseointegration with direct bone contact. The soft tissue parameters revealed no significant differences between the two implant types. The peri-implant soft tissues appear to behave similarly in both implant types.
Resumo:
In the title compound, [Ni(C(20)H(17)N(2)O(2)S)(2)], the NiII atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-[(furan-2-yl)carbonyl]thioureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Ni-S and Ni-O bond lengths lie within the range of those found in related structures. The dihedral angle between the planes of the two chelating rings is 20.33 (6)degrees.
Resumo:
The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.
Resumo:
In the title compound, [Ni(C(18)H(13)N(2)O(2)S)(2)], the Ni(II) atom is coordinated by the S and O atoms of two N-furoyl-N ',N '-diphenylthioureate ligands in a slightly distorted squareplanar coordination geometry. The two O and two S atoms are cis to each other.
Resumo:
In the title compound, [Ni(C22H19N2OS)(2)], the Ni-II atom is coordinated by the S and O atoms of two N-benzoyl-N',N'-dibenzylthioureate ligands in a slightly distorted square-planar geometry. The two O atoms are cis, as are the two S atoms.
Resumo:
An analytical procedure based on microwave-assisted digestion with diluted acid and a double cloud point extraction is proposed for nickel determination in plant materials by flame atomic absorption spectrometry. Extraction in micellar medium was successfully applied for sample clean up, aiming to remove organic species containing phosphorous that caused spectral interferences by structured background attributed to the formation of PO species in the flame. Cloud point extraction of nickel complexes formed with 1,2-thiazolylazo-2-naphthol was explored for pre-concentration, with enrichment factor estimated as 30, detection limit of 5 mu g L(-1) (99.7% confidence level) and linear response up to 80 mu g L(-1). The accuracy of the procedure was evaluated by nickel determinations in reference materials and the results agreed with the certified values at the 95% confidence level.
Resumo:
Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.
Resumo:
A procedure for simultaneous separation/preconcentration of copper. zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-I 14). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1). 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0. and 6.3 mu g L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. (C) 2009 Published by Elsevier B.V.
Resumo:
In this work the influence of four different ligands present in the xylem sap of Quercus ilex (histidine, citric, oxalic and aspartic acids) on Ni(II) adsorption by xylem was investigated. Grinded xylem was trapped in acrylic columns and solutions of Ni(II), in the absence and presence of the four ligands prepared in KNO(3) 0-1 mol L(-1) at pH 5.5, were percolated through the column. Aliquots of solutions were recovered in the column end for Ni determination by graphite furnace atomic absorption spectrometry (GFAAS). The experimental. data to describe Ni sorption by xylem in both the presence and absence of ligands was better explained by the Freundlich isotherm model. The decreasing affinity order of ligands for Ni was: oxalic acid > citric acid > histidine > aspartic acid. On the other hand, the Ni(II) adsorption by xylem increased following the inverse sequence of ligands. Potentiometric titrations of acidic groups were carried out to elucidate the sorption site groups available in Q. ilex xylem. The potentiometric titration has shown three sorption sites: pK(a) 2.6 (57.7% of the sorption sites), related to monobasic aliphatic carboxylic acids or nitrogen aromatic bases, pK(a) 8.1 (9.6%) and pK(a) 9.9 (32.7%), related to phenolic groups. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Air transport has become a vital component of the global economy. However, greenhouse-gas emissions from this sector have a significant impact on global climate, being responsible for over 3.5% of all anthropogenic radiative forcing. Also, the accrued visibility of aircraft emissions greatly affects the public image of the industry. In this context, incentive-based regulations, in the form of price or quantity controls, can be envisaged as alternatives to mitigate these emissions. The use of environmental charges in air transport, and the inclusion of the sector in the European Union Emissions Trading Scheme (EU ETS), are considered under a range of scenarios. The impacts of these measures on demand are estimated, and results suggest that they are likely to be minimal-mainly due to the high willingness to pay for air transport. In particular, in the EU ETS scenario currently favoured by the EU, demand reductions are less than 2%. This may not be true in the longer run, for short trips, or if future caps become more stringent. Furthermore, given current estimates of the social Cost Of CO2 as well as typical EU ETS prices, supply-side abatement would be too costly to be encouraged by these policies in the short term. The magnitude of aviation CO2 emissions in the EU is estimated, both in physical and monetary terms; the results are consistent with Eurocontrol estimates and, for the EU-25, the total social cost of these emissions represents only 0.03% of the region`s GDP. It is concluded that the use of multisector policies, such as the EU ETS, is unsuitable for curbing emissions from air transport, and that stringent emission charges or an isolated ETS would be better instruments. However, the inclusion of aviation in the EU ETS has advantages under target-oriented post-2012 scenarios, such as policy-costs dilution, certainty in reductions, and flexibility in abatement allocation. This solution is also attractive to airlines, as it would improve their public image but require virtually no reduction of their own emissions, as they would be fully capable of passing on policy costs to their customers.