970 resultados para Multivariate data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foundations support constitute one of the types of legal entities of private law forged with the purpose of supporting research projects, education and extension and institutional, scientific and technological development of Brazil. Observed as links of the relationship between company, university, and government, foundations supporting emerge in the Brazilian scene from the principle to establish an economic platform of development based on three pillars: science, technology and innovation – ST&I. In applied terms, these ones operate as tools of debureaucratisation making the management between public entities more agile, especially in the academic management in accordance with the approach of Triple Helix. From the exposed, the present study has as purpose understanding how the relation of Triple Helix intervenes in the fund-raising process of Brazilian foundations support. To understand the relations submitted, it was used the interaction models University-Company-Government recommended by Sábato and Botana (1968), the approach of the Triple Helix proposed by Etzkowitz and Leydesdorff (2000), as well as the perspective of the national innovation systems discussed by Freeman (1987, 1995), Nelson (1990, 1993) and Lundvall (1992). The research object of this study consists of 26 state foundations that support research associated with the National Council of the State Foundations of Supporting Research - CONFAP, as well as the 102 foundations in support of IES associated with the National Council of Foundations of Support for Institutions of Higher Education and Scientific and Technological Research – CONFIES, totaling 128 entities. As a research strategy, this study is considered as an applied research with a quantitative approach. Primary research data were collected using the e-mail Survey procedure. Seventy-five observations were collected, which corresponds to 58.59% of the research universe. It is considering the use of the bootstrap method in order to validate the use of the sample in the analysis of results. For data analysis, it was used descriptive statistics and multivariate data analysis techniques: the cluster analysis; the canonical correlation and the binary logistic regression. From the obtained canonical roots, the results indicated that the dependency relationship between the variables of relations (with the actors of the Triple Helix) and the financial resources invested in innovation projects is low, assuming the null hypothesis of this study, that the relations of the Triple Helix do not have interfered positively or negatively in raising funds for investments in innovation projects. On the other hand, the results obtained with the cluster analysis indicate that entities which have greater quantitative and financial amounts of projects are mostly large foundations (over 100 employees), which support up to five IES, publish management reports and use in their capital structure, greater financing of the public department. Finally, it is pertinent to note that the power of the classification of the logistic model obtained in this study showed high predictive capacity (80.0%) providing to the academic community replication in environments of similar analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigated the relationship between vegetation and modern-pollen rain along the elevational gradient of Mount Paggeo. We apply multivariate data analysis to assess the relationship between vegetation and modern-pollen rain and quantify the representativeness of forest zones. This study represents the first statistical analysis of pollen-vegetation relationship along an elevational gradient in Greece. Hence, this paper improves confidence in interpretation of palynological records from north-eastern Greece and may refine past climate reconstructions for a more accurate comparison of data and modelling. Numerical classification and ordination were performed on pollen data to assess differences among plant communities that beech (Fagus sylvatica) dominates or co-dominates. The results show a strong relationship between altitude, arboreal cover, human impact and variations in pollen and nonpollen palynomorph taxa percentages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To determine the psychometric properties of two scales designed to examine attitudes regarding palliative care: Comfort Scale in Palliative Care (CSPC, Pereira et al.) and Tanatophobia Scale (TS, Merrill et al.)Method: Seventy-seven students who completed an online course on psychosocial aspects of palliative care offered by the Latin American Association of Palliative Care participated in the study. They also completed the scales before and after the course. Construct validity and reliability of the CSPC and the TS were assessed using a Principal Components Analysis, internal reliability coefficient and test-retest reliability. Further, comparative statistics between the pre-course and post-course results were obtained in order to determine changes in attitudes.Results: The Principal Components Analysis showed satisfactory fit to the data. 3 components were extracted: two for the CSPC and one for the TS, which explained 55.37% of the variance. Internal consistency coefficients were satisfactory in all cases and Cronbach´s Alphas were satisfactory for all the scales, particularly for the CSPC. Test-retest reliability in t1 and t2 was found to be non significant, indicating that measures were not related in time. Regarding pre-course/post-course comparisons, significant changes in comfort assisting patients (p = 0.004) and comfort assisting families (p = 0.001) following the course were identified, but changes in thanatophobia were non significant (p > 0.05).Conclusions: both scales are valid and reliable. Attitudes regarding the practice of palliative care and how they change, particularly regarding psychosocial issues, can be accurately measured using the examined scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of products from certain regions or countries being banned because of an identified or non-identified hazard, proof of geographical origin is essential with regard to feed and food safety issues. Usually, the product labeling of an affected feed lot shows origin, and the paper documentation shows traceability. Incorrect product labeling is common in embargo situations, however, and alternative analytical strategies for controlling feed authenticity are therefore needed. In this study, distillers' dried grains and solubles (DDGS) were chosen as the product on which to base a comparison of analytical strategies aimed at identifying the most appropriate one. Various analytical techniques were investigated for their ability to authenticate DDGS, including spectroscopic and spectrometric techniques combined with multivariate data analysis, as well as proven techniques for authenticating food, such as DNA analysis and stable isotope ratio analysis. An external validation procedure (called the system challenge) was used to analyze sample sets blind and to compare analytical techniques. All the techniques were adapted so as to be applicable to the DDGS matrix. They produced positive results in determining the botanical origin of DDGS (corn vs. wheat), and several of them were able to determine the geographical origin of the DDGS in the sample set. The maintenance and extension of the databanks generated in this study through the analysis of new authentic samples from a single location are essential in order to monitor developments and processing that could affect authentication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Honey is a high value food commodity with recognized nutraceutical properties. A primary driver of the value of honey is its floral origin. The feasibility of applying multivariate data analysis to various chemical parameters for the discrimination of honeys was explored. This approach was applied to four authentic honeys with different floral origins (rata, kamahi, clover and manuka) obtained from producers in New Zealand. Results from elemental profiling, stable isotope analysis, metabolomics (UPLC-QToF MS), and NIR, FT-IR, and Raman spectroscopic fingerprinting were analyzed. Orthogonal partial least square discriminant analysis (OPLS-DA) was used to determine which technique or combination of techniques provided the best classification and prediction abilities. Good prediction values were achieved using metabolite data (for all four honeys, Q2 = 0.52; for manuka and clover, Q2 = 0.76) and the trace element/isotopic data (for manuka and clover, Q2 = 0.65), while the other chemical parameters showed promise when combined (for manuka and clover, Q2 = 0.43).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principal purpose of this research was to investigate discriminant factors of survival and failure of micro and small businesses, and the impacts of these factors in the public politics for entrepreneurship in the State of Rio Grande do Norte. The data were ceded by SEBRAE/RN and the Commercial Committee of the Rio Grande do Norte State and it included the businesses that were registered in 2000, 2001 and 2002. According to the theoretical framework 3 groups of factors were defined Business Financial Structure, Entrepreneurial Preparation and Entrepreneurial Behavior , and the factors were studied in order to determine whether they are discriminant or not of the survival and business failure. A quantitative research was applied and advanced statistical techniques were used multivariate data analysis , beginning with the factorial analysis and after using the discriminant analysis. As a result, canonical discriminant functions were found and they partially explained the survival and business failure in terms of the factors and groups of factors. The analysis also permitted the evaluation of the public politics for entrepreneurship and it was verified, according to the view of the entrepreneurs, that these politics were weakly effective to avoid business failure. Some changes in the referred politics were suggested based on the most significant factors found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil has a great diversity of native fruits, which are not always widely consumed, being sold only in certain regions, due to their difficulty of post-harvest conservation. One such fruit is yellow guava, interesting source of nutrients. To promote the consumption and use of this fruit to the consumer public in different regions of the country, this study evaluated the incorporation of yellow Ya-cy araçá in formulating a cereal bar. Therefore, fruits were evaluated for their chemical, physical and chemical characteristics and bioactive compounds in different stages of maturation yellow guava (green, mature and dried forms). The behavior of guava yellow front of to UV-C radiation was also evaluated. After these reviews, there was obtained yellow ripe guava flour after previous tests, was added to the base formulation cereal bar. For the experimental planning and development of the formulations was used factorial design 22 with a central point. The developed formulations were subjected to sensory evaluation using for treatment of multivariate data analysis (Principal Component Analysis- ACP). The preferred formulation in sensory evaluation was evaluated in their physical characteristics (texture), physical-chemical (moisture, ash, lipids, proteins, carbohydrates, dietary fiber and calorie), mineral content and fatty acid profile. The results indicated that the added yellow guava cereal bar developed in this study is one way to application and use of guava, increasing the consumption of fruit to different regions of the country, and can be considered a functional product, not only to contain the fruit in its composition, but also to present many beneficial nutrients that contribute to the health of consumers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principal purpose of this research was to investigate discriminant factors of survival and failure of micro and small businesses, and the impacts of these factors in the public politics for entrepreneurship in the State of Rio Grande do Norte. The data were ceded by SEBRAE/RN and the Commercial Committee of the Rio Grande do Norte State and it included the businesses that were registered in 2000, 2001 and 2002. According to the theoretical framework 3 groups of factors were defined Business Financial Structure, Entrepreneurial Preparation and Entrepreneurial Behavior , and the factors were studied in order to determine whether they are discriminant or not of the survival and business failure. A quantitative research was applied and advanced statistical techniques were used multivariate data analysis , beginning with the factorial analysis and after using the discriminant analysis. As a result, canonical discriminant functions were found and they partially explained the survival and business failure in terms of the factors and groups of factors. The analysis also permitted the evaluation of the public politics for entrepreneurship and it was verified, according to the view of the entrepreneurs, that these politics were weakly effective to avoid business failure. Some changes in the referred politics were suggested based on the most significant factors found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of virtual social networks (VSNs) has been prevalent among consumers worldwide. Numerous studies have investigated various aspects of VSNs. However, these studies have mainly focused on students and young adults as they were early adopters of these innovative networks. A search of the literature revealed there has been a paucity of research on adult consumers’ use of VSNs. This research study addressed this gap in the literature by examining the determinants of engagement in VSNs among adult consumers in Singapore. The objectives of this study are to empirically investigate the determinants of engagement in VSNs and to offer theoretical insights into consumers’ preference and usage of VSNs. This study tapped upon several theories developed in the discipline of technology and innovation adoption. These were Roger’s Diffusion of Innovation, Theory of Reasoned Action (TRA), Theory of Planned Behavior (TPB), Technology Acceptance Model (TAM), Conceptual Framework of Individual Innovation Adoption by Frambach and Schillewaert (2002), Enhanced Model of Innovation Adoption by Talukder (2011), Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) and the Information Systems (IS) Success Model. The proposed research model, named the Media Usage Model (MUM), is a framework rooted in innovation diffusion and IS theories. The MUM distilled the essence of these established models and thus provides an updated, lucid explanation of engagement in VSNs. A cross-sectional, online social survey was conducted to collect quantitative data to examine the validity of the proposed research model. Multivariate data analysis was carried out on a data set comprising 806 usable responses by utilizing SPSS, and for structural equation modeling AMOS and SmartPLS. The results indicate that consumer attitude towards VSNs is significantly and positively influenced by: three individual factors – hedonic motivation, incentives and experience; two system characteristics – system quality and information quality; and one social factor – social bonding. Consumer demographics were found to influence people’s attitudes towards VSNs. In addition, consumer experience and attitude towards VSNs significantly and positively influence their usage of VSNs. The empirical data supported the proposed research model, explaining 80% of variance in attitude towards VSNs and 45% of variance in usage of VSNs. Therefore, the MUM achieves a definite contribution to theoretical knowledge of consumer engagement in VSNs by deepening and broadening our appreciation of the intricacies related to use of VSNs in Singapore. This study’s findings have implications for customer service management, services marketing and consumer behavior. These findings also have strategic implications for maximizing efficient utilization and effective management of VSNs by businesses and operators. The contributions of this research are: firstly, shifting the boundaries of technology or innovation adoption theories from research on employees to consumers as well as the boundaries of Internet usage or adoption research from students to adults, which is also known as empirical generalization; secondly, highlighting the issues associated with lack of significance of social factors in adoption research; and thirdly, augmenting information systems research by integrating important antecedents for success in information systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014 Cises This work is distributed with License Creative Commons Attribution-Non commercial-No derivatives 4.0 International (CC BY-BC-ND 4.0)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we explore and demonstrate the potential for modeling and classification using quantile-based distributions, which are random variables defined by their quantile function. In the first part we formalize a least squares estimation framework for the class of linear quantile functions, leading to unbiased and asymptotically normal estimators. Among the distributions with a linear quantile function, we focus on the flattened generalized logistic distribution (fgld), which offers a wide range of distributional shapes. A novel naïve-Bayes classifier is proposed that utilizes the fgld estimated via least squares, and through simulations and applications, we demonstrate its competitiveness against state-of-the-art alternatives. In the second part we consider the Bayesian estimation of quantile-based distributions. We introduce a factor model with independent latent variables, which are distributed according to the fgld. Similar to the independent factor analysis model, this approach accommodates flexible factor distributions while using fewer parameters. The model is presented within a Bayesian framework, an MCMC algorithm for its estimation is developed, and its effectiveness is illustrated with data coming from the European Social Survey. The third part focuses on depth functions, which extend the concept of quantiles to multivariate data by imposing a center-outward ordering in the multivariate space. We investigate the recently introduced integrated rank-weighted (IRW) depth function, which is based on the distribution of random spherical projections of the multivariate data. This depth function proves to be computationally efficient and to increase its flexibility we propose different methods to explicitly model the projected univariate distributions. Its usefulness is shown in classification tasks: the maximum depth classifier based on the IRW depth is proven to be asymptotically optimal under certain conditions, and classifiers based on the IRW depth are shown to perform well in simulated and real data experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação