925 resultados para Mobile-Learning
Resumo:
Based on an unprecedented need of stimulating creative capacities towards entrepreneurship to university students and young researchers, this paper introduces and analyses a smart learning ecosystem for encouraging teaching and learning on creative thinking as a distinct feature to be taught and learnt in universities. The paper introduces a mashed-up authoring architecture for designing lesson-plans and games with visual learning mechanics for creativity learning. The design process is facilitated by creativity pathways discerned across components. Participatory learning, networking and capacity building is a key aspect of the architecture, extending the learning experience and context from the classroom to outdoor (co-authoring of creative pathways by students, teachers and real-world entrepreneurs) and personal spaces. We anticipate that the smart learning ecosystem will be empirically evaluated and validated in future iterations for exploring the benefits of using games for enhancing creative mindsets, unlocking the imagination that lies within, practiced and transferred to multiple academic tribes and territories.
Resumo:
Students with specific learning disabilities (SLD) typically learn less history content than their peers without disabilities and show fewer learning gains. Even when they are provided with the same instructional strategies, many students with SLD struggle to grasp complex historical concepts and content area vocabulary. Many strategies involving technology have been used in the past to enhance learning for students with SLD in history classrooms. However, very few studies have explored the effectiveness of emerging mobile technology in K-12 history classrooms. This study investigated the effects of mobile devices (iPads) as an active student response (ASR) system on the acquisition of U.S. history content of middle school students with SLD. An alternating treatments single subject design was used to compare the effects of two interventions. There were two conditions and a series of pretest probesin this study. The conditions were: (a) direct instruction and studying from handwritten notes using the interactive notebook strategy and (b) direct instruction and studying using the Quizlet App on the iPad. There were three dependent variables in this study: (a) percent correct on tests, (b) rate of correct responses per minute, and (c) rate of errors per minute. A comparative analysis suggested that both interventions (studying from interactive notes and studying using Quizlet on the iPad) had varying degrees of effectiveness in increasing the learning gains of students with SLD. In most cases, both interventions were equally effective. During both interventions, all of the participants increased their percentage correct and increased their rate of correct responses. Most of the participants decreased their rate of errors. The results of this study suggest that teachers of students with SLD should consider a post lesson review in the form of mobile devices as an ASR system or studying from handwritten notes paired with existing evidence-based practices to facilitate students’ knowledge in U.S. history. Future research should focus on the use of other interactive applications on various mobile operating platforms, on other social studies subjects, and should explore various testing formats such as oral question-answer and multiple choice.
Resumo:
In this paper, we describe how the pathfinder algorithm converts relatedness ratings of concept pairs to concept maps; we also present how this algorithm has been used to develop the Concept Maps for Learning website (www.conceptmapsforlearning.com) based on the principles of effective formative assessment. The pathfinder networks, one of the network representation tools, claim to help more students memorize and recall the relations between concepts than spatial representation tools (such as Multi- Dimensional Scaling). Therefore, the pathfinder networks have been used in various studies on knowledge structures, including identifying students’ misconceptions. To accomplish this, each student’s knowledge map and the expert knowledge map are compared via the pathfinder software, and the differences between these maps are highlighted. After misconceptions are identified, the pathfinder software fails to provide any feedback on these misconceptions. To overcome this weakness, we have been developing a mobile-based concept mapping tool providing visual, textual and remedial feedback (ex. videos, website links and applets) on the concept relations. This information is then placed on the expert concept map, but not on the student’s concept map. Additionally, students are asked to note what they understand from given feedback, and given the opportunity to revise their knowledge maps after receiving various types of feedback.
Resumo:
A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability.
Resumo:
Students with specific learning disabilities (SLD) typically learn less history content than their peers without disabilities and show fewer learning gains. Even when they are provided with the same instructional strategies, many students with SLD struggle to grasp complex historical concepts and content area vocabulary. Many strategies involving technology have been used in the past to enhance learning for students with SLD in history classrooms. However, very few studies have explored the effectiveness of emerging mobile technology in K-12 history classrooms. ^ This study investigated the effects of mobile devices (iPads) as an active student response (ASR) system on the acquisition of U.S. history content of middle school students with SLD. An alternating treatments single subject design was used to compare the effects of two interventions. There were two conditions and a series of pretest probesin this study. The conditions were: (a) direct instruction and studying from handwritten notes using the interactive notebook strategy and (b) direct instruction and studying using the Quizlet App on the iPad. There were three dependent variables in this study: (a) percent correct on tests, (b) rate of correct responses per minute, and (c) rate of errors per minute. ^ A comparative analysis suggested that both interventions (studying from interactive notes and studying using Quizlet on the iPad) had varying degrees of effectiveness in increasing the learning gains of students with SLD. In most cases, both interventions were equally effective. During both interventions, all of the participants increased their percentage correct and increased their rate of correct responses. Most of the participants decreased their rate of errors. ^ The results of this study suggest that teachers of students with SLD should consider a post lesson review in the form of mobile devices as an ASR system or studying from handwritten notes paired with existing evidence-based practices to facilitate students’ knowledge in U.S. history. Future research should focus on the use of other interactive applications on various mobile operating platforms, on other social studies subjects, and should explore various testing formats such as oral question-answer and multiple choice. ^
Resumo:
Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.
Resumo:
The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.
Resumo:
Il volume di tesi ha riguardato lo sviluppo di un'applicazione mobile che sfrutta la Realtà Aumentata e il Machine Learning nel contesto della biodiversità. Nello specifico si è realizzato un modello di AI che permetta la classificazione di immagini di fiori. Tale modello è stato poi integrato in Android, al fine della realizzazione di un'app che riesca a riconoscere specifiche specie di fiori, oltre a individuare gli insetti impollinatori attratti da essi e rappresentarli in Realtà Aumentata.
Resumo:
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
Resumo:
As teachers, we are challenged everyday to solve pedagogical problems and we have to fight for our students’ attention in a media rich world. I will talk about how we use ICT in Initial Teacher Training and give you some insight on what we are doing. The most important benefit of using ICT in education is that it makes us reflect on our practice. There is no doubt that our classrooms need to be updated, but we need to be critical about every peace of hardware, software or service that we bring into them. It is not only because our budgets are short, but also because e‐learning is primarily about learning, not technology. Therefore, we need to have the knowledge and skills required to act in different situations, and choose the best tool for the job. Not all subjects are suitable for e‐learning, nor do all students have the skills to organize themselves their own study times. Also not all teachers want to spend time programming or learning about instructional design and metadata. The promised land of easy use of authoring tools (e.g. eXe and Reload) that will lead to all teachers become Learning Objects authors and share these LO in Repositories, all this failed, like previously HyperCard, Toolbook and others. We need to know a little bit of many different technologies so we can mobilize this knowledge when a situation requires it: integrate e‐learning technologies in the classroom, not a flipped classroom, just simple tools. Lecture capture, mobile phones and smartphones, pocket size camcorders, VoIP, VLE, live video broadcast, screen sharing, free services for collaborative work, save, share and sync your files. Do not feel stressed to use everything, every time. Just because we have a whiteboard does not mean we have to make it the centre of the classroom. Start from where you are, with your preferred subject and the tools you master. Them go slowly and try some new tool in a non‐formal situation and with just one or two students. And you don’t need to be alone: subscribe a mailing list and share your thoughts with other teachers in a dedicated forum, even better if both are part of a community of practice, and share resources. We did that for music teachers and it was a success, in two years arriving at 1.000 members. Just do it.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Informal learning is becoming more and more important: Nowadays people learn more this way, through the Internet, than in schools or normal trainings. But they don’t get any certificateswhich attest this fact. So they can't show the employer or teacher etc. that they have learned something. TRAILER project aim is to solve this problem by developing a special tool for managing of all competences and skills acquired through informal learning experiences. Both from the perspective of the user and the perspective of an institution or a company. We’ll present the IT tool to show how people can make their informal learning outcomes visible. TRAILER helps users to gather all information about process and outcomes of their informal learning. Users can share this with friends, colleagues or their employees, teachers and so on. They can create an interactive e-portfolio which can be attached to their CV, cover letter or Knowledge Management system etc. After the presentation of the tool we will discuss possible areas and fields to use this tool. Also we would like to discuss all possible use of the tool by the participants and another needs in this area. Moreover we want to discuss other problems in informal learning process, ways to solve the problems and discuss other ideas of different IT tools which could help in informal learning process. During the discussion we’ll use an interactive respond system which can be used on mobile devices: it makes possible for participants to share their opinions individually before knowing another persons' opinion.
Resumo:
Recent studies of mobile Web trends show a continuous explosion of mobile-friendly content. However, the increasing number and heterogeneity of mobile devices poses several challenges for Web programmers who want to automatically get the delivery context and adapt the content to mobile devices. In this process, the devices detection phase assumes an important role where an inaccurate detection could result in a poor mobile experience for the enduser. In this paper we compare the most promising approaches for mobile device detection. Based on this study, we present an architecture for a system to detect and deliver uniform m-Learning content to students in a Higher School. We focus mainly on the devices capabilities repository manageable and accessible through an API. We detail the structure of the capabilities XML Schema that formalizes the data within the devices capabilities XML repository and the REST Web Service API for selecting the correspondent devices capabilities data according to a specific request. Finally, we validate our approach by presenting the access and usage statistics of the mobile web interface of the proposed system such as hits and new visitors, mobile platforms, average time on site and rejection rate.
Resumo:
Recent studies of mobile Web trends show the continued explosion of mobile-friend content. However, the wide number and heterogeneity of mobile devices poses several challenges for Web programmers, who want automatic delivery of context and adaptation of the content to mobile devices. Hence, the device detection phase assumes an important role in this process. In this chapter, the authors compare the most used approaches for mobile device detection. Based on this study, they present an architecture for detecting and delivering uniform m-Learning content to students in a Higher School. The authors focus mainly on the XML device capabilities repository and on the REST API Web Service for dealing with device data. In the former, the authors detail the respective capabilities schema and present a new caching approach. In the latter, they present an extension of the current API for dealing with it. Finally, the authors validate their approach by presenting the overall data and statistics collected through the Google Analytics service, in order to better understand the adherence to the mobile Web interface, its evolution over time, and the main weaknesses.